Skip to main content
Log in

Di-defects synergy boost electrocatalysis hydrogen evolution over two-dimensional heterojunctions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electronic modulation on the inert basal plane of transition-metal dichalcogenides(TMDs) through vacancy defect excitation, although extremely challenging, is urgent for understanding the factors that impact the hydrogen evolution reaction (HER) catalytic activity. Here, ultrathin WS2 nanosheets with precise quantitative single atomic S-vacancy on the inert basal plane were flexible prepared through hydrogen peroxide etching strategy. The as-synthesized single atomic S-vacancy defect WS2 (SVD-WS2) nanoflake with the activated basal plane exhibited an impressive overpotential of 137 mV at a current density of 10 mA·cm−2 and a Tafel slope of 53.9 mV·dec−1. Furthermore, anchoring on the defect graphene matrix, the assembled two-dimensional (2D) stacking heterojunction exhibits further enhanced HER catalytic activity (an overpotential of 108 mV vs. 10 mA·cm−2 and a Tafel slope of 48.3 mV·dec−1) and stability (∼ 10% decline after 9,000 cycles), which attributed to the electronic structure modulation from the synergetic interactions between SVD-WS2 and defect graphene. Our finding provides a smart defects introduce strategy to trigger high-efficiency hydrogen evolution over WS2 nanosheets and a general 2D heterojunctions fabricated inspiration based on strong interaction interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, H. J.; Yan, M. M.; Yang, C. Z.; He, H. Y.; Jiang, Q. G.; Yang, L.; Lu, Z. Y.; Sun, Z. Q.; Xu, X. T.; Bando Y. et al. Graphene nano-architectonics: Recent advances in graphene-based electrocatalysts for hydrogen evolution reaction. Adv. Mater. 2019, 31, 1903415.

    Article  CAS  Google Scholar 

  2. Zhang, J.; Cui, R. J.; Gao, C. C.; Bian, L. Y.; Pu, Y.; Zhu, X. B.; Li, X. A.; Huang, W. Cation-modulated HER and OER activities of hierarchical VOOH hollow architectures for high-efficiency and stable overall water splitting. Small 2019, 15, 1904688.

    Article  CAS  Google Scholar 

  3. Chen, W.; Huang, G. B.; Song, H.; Zhang, J. Efficient and stable charge transfer channels for photocatalytic water splitting activity of CdS without sacrificial agents. J. Mater. Chem. A 2020, 8, 20963–20969.

    Article  CAS  Google Scholar 

  4. Lu, W. W.; Zhang, Y.; Zhang, J. J.; Xu, P. Reduction of gas CO2 to CO with high selectivity by Ag nanocube-based membrane cathodes in a photoelectrochemical system. Ind. Eng. Chem. Res. 2020, 59, 5536–5545.

    Article  CAS  Google Scholar 

  5. Xu, P.; Lu, W. W.; Zhang, J. J.; Zhang, L. Efficient hydrolysis of ammonia borane for hydrogen evolution catalyzed by plasmonic Ag@Pd core-shell nanocubes. ACS Sustainable Chem. Eng. 2020, 8, 12366–12377.

    Article  CAS  Google Scholar 

  6. Lin, L. X.; Sherrell, P.; Liu, Y. Q.; Lei, W.; Zhang, S. W.; Zhang, H. J.; Wallace, G. G.; Chen, J. Engineered 2D transition metal dichalcogenides-a vision of viable hydrogen evolution reaction catalysis. Adv. Energy Mater. 2020, 10, 1903870.

    Article  CAS  Google Scholar 

  7. Cui, Y.; Xue, Y.; Zhang, R.; Zhang, J.; Li, X. A.; Zhu, X. B. Vanadium-cobalt oxyhydroxide shows ultralow overpotential for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 21911–21917.

    Article  CAS  Google Scholar 

  8. Zhou, Q.; Zhao, G Q.; Rui, K.; Chen, Y. P.; Xu, X.; Dou, S. X.; Sun, W. P. Engineering additional edge sites on molybdenum dichalcogenides toward accelerated alkaline hydrogen evolution kinetics. Nanoscale 2019, 11, 717–724.

    Article  CAS  Google Scholar 

  9. Li, L.; Qin, Z. D.; Ries, L.; Hong, S.; Michel, T.; Yang, J.; Salameh, C.; Bechelany, M.; Miele, P.; Kaplan, D. et al. Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano 2019, 13, 6824–6834.

    Article  CAS  Google Scholar 

  10. Sun, J. P.; Hu, X. T.; Huang, Z. D.; Huang, T. X.; Wang, X. K.; Guo, H. L.; Dai, F. N.; Sun, D. F. Atomically thin defect-rich Ni-Se-S hybrid nanosheets as hydrogen evolution reaction electrocatalysts. Nano Res. 2020, 13, 2056–2062.

    Article  CAS  Google Scholar 

  11. Sun, Y. Q.; Xu, K.; Wei, Z. X.; Li, H. L.; Zhang, T.; Li, X. Y.; Cai, W. P.; Ma, J. M.; Fan, H.; Li, Y. Strong electronic interaction in dual-cation incorporated NiSe2 nanosheets with lattice distortion for highly efficient overall water splitting. Adv. Mater. 2018, 30, 1802121.

    Article  Google Scholar 

  12. Zhang, F. Y.; Xi, S. B.; Lin, G. M.; Hu, X. L.; Lou, X. W.; Xie, K. Metallic porous iron nitride and tantalum nitride single crystals with enhanced electrocatalysis performance. Adv. Mater. 2019, 31, 1806552.

    Article  Google Scholar 

  13. Zheng, Y. R.; Wu, P.; Gao, M. R.; Zhang, X. L.; Gao, F. Y.; Ju, H. X.; Wu, R.; Gao, Q.; You, R.; Huang, W. X. et al. Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat. Commun. 2018, 9, 2533.

    Article  Google Scholar 

  14. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

    Article  CAS  Google Scholar 

  15. Dinh, K. N.; Sun, X. L.; Dai, Z. F.; Zheng, Y.; Zheng, P. L.; Yang, J.; Xu, J. W.; Wang, Z. G.; Yan, Q. Y. O2 Plasma and cation tuned nickel phosphide nanosheets for highly efficient overall water splitting. Nano Energy 2018, 54, 82–90.

    Article  CAS  Google Scholar 

  16. Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320–1326.

    Article  CAS  Google Scholar 

  17. Zhang, Q. R.; Bedford, N. M.; Pan, J.; Lu, X. Y.; Amal, R. A fully reversible water electrolyzer cell made up from FeCoNi (oxy)hydroxide atomic layers. Adv. Energy Mater. 2019, 9, 1901312.

    Article  Google Scholar 

  18. Liu, J. L.; Wang, Z. Y.; Li, J.; Cao, L. J.; Lu, Z. G.; Zhu, D. D. Structure engineering of MoS2 via simultaneous oxygen and phosphorus incorporation for improved hydrogen evolution. Small 2020, 16, 1905738.

    Article  CAS  Google Scholar 

  19. Wang, H. Q.; Xu, Z. F.; Zhang, Z. F.; Hu, S. X.; Ma, M. J.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Addressable surface engineering for N-doped WS2 nanosheet arrays with abundant active sites and the optimal local electronic structure for enhanced hydrogen evolution reaction. Nanoscale 2020, 12, 22541–22550.

    Article  CAS  Google Scholar 

  20. Gao, B.; Du, X. Y.; Li, Y. H.; Ding, S. J.; Xiao, C. H.; Song, Z. X. Deep phase transition of MoS2 for excellent hydrogen evolution reaction by a facile C-doping strategy. ACS Appl. Mater. Interfaces 2020, 12, 877–885.

    Article  CAS  Google Scholar 

  21. Gong, Q. F.; Cheng, L.; Liu, C. H.; Zhang, M.; Feng, Q. L.; Ye, H. L.; Zeng, M.; Xie, L. M.; Liu, Z.; Li, Y. G. Ultrathin MoS2(1-x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 2015, 5, 2213–2219.

    Article  CAS  Google Scholar 

  22. Jain, A.; Sadan, B. M.; Ramasubramaniam, A. Promoting active sites for hydrogen evolution in MoSe2 via transition-metal doping. J. Phys. Chem. C 2020, 124, 12324–12336.

    Article  CAS  Google Scholar 

  23. Shi, Y.; Zhou, Y.; Yang, D. R.; Xu, W. X.; Wang, C.; Wang, F. B.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 15479–15485.

    Article  CAS  Google Scholar 

  24. Zhang, X.; Zhou, F.; Zhang, S.; Liang, Y. Y.; Wang, R. H. Engineering MoS2 basal planes for hydrogen evolution via synergistic ruthenium doping and nanocarbon hybridization. Adv. Sci. 2019, 6, 1900090.

    Article  Google Scholar 

  25. Pan, U. N.; Singh, T. I.; Paudel, D. R.; Gudal, C. C.; Kim, N. H.; Lee, J. H. Covalent doping of Ni and P on 1T-enriched MoS2 bifunctional 2D-nanostructures with active basal planes and expanded interlayers boosts electrocatalytic water splitting. J. Mater. Chem. A 2020, 8, 19654–19664.

    Article  CAS  Google Scholar 

  26. Li, C. Y.; Liu, M. D.; Ding, H. Y.; He, L. Q.; Wang, E. Z.; Wang, B. L.; Fan, S. S.; Liu, K. A lightly Fe-doped (NiS2/MoS2)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 17527–17536.

    Article  CAS  Google Scholar 

  27. Zhou, X. L.; Liu, Y.; Ju, H. X.; Pan, B. C.; Zhu, J. F.; Ding, T.; Wang, C. D.; Yang, Q. Design and epitaxial growth of MoSe2-NiSe vertical heteronanostructures with electronic modulation for enhanced hydrogen evolution reaction. Chem. Mater. 2016, 28, 1838–1846.

    Article  CAS  Google Scholar 

  28. Gao, Z. W.; Liu, M. J.; Zheng, W. R.; Zhang, X. D.; Lee, L. Y. S. Surface engineering of MoS2 via laser-induced exfoliation in protic solvents. Small 2019, 15, 1903791.

    Article  CAS  Google Scholar 

  29. Geng, S.; Liu, Y. Q.; Yu, Y. S.; Yang, W. W.; Li, H. B. Engineering defects and adjusting electronic structure on S doped MoO2 nanosheets toward highly active hydrogen evolution reaction. Nano Res. 2020, 13, 121–126.

    Article  CAS  Google Scholar 

  30. Wu, Z. X.; Zhao, Y.; Jin, W.; Jia, B. H.; Wang, J.; Ma, T. Y. Recent progress of vacancy engineering for electrochemical energy conversion related applications. Adv. Funct. Mater. 2021, 31, 2009070.

    Article  CAS  Google Scholar 

  31. Ying, Y.; Han, J. C.; Zhang, Y. M.; Zhang, X. H.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X. J.; Wang, Y.; Zhang, Z. H. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 2016, 138, 7965–7972.

    Article  Google Scholar 

  32. Yang, J.; Wang, Y.; Lagos, M. J.; Manichev, V.; Fullon, R.; Song, X. J.; Voiry, D.; Chakraborty, S.; Zhang, W. J.; Batson, P. E. et al. Single atomic vacancy catalysis. ACS Nano 2019, 13, 9958–9964.

    Article  CAS  Google Scholar 

  33. Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

    Article  CAS  Google Scholar 

  34. Yi, J.; Zhang, L. Z.; Du, A. J.; Gao, G. P.; Chen, J.; Yan, X. C.; Brown, C.; Yao, X. D. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 2016, 28, 9532–9538.

    Article  Google Scholar 

  35. Ouyang, Y. X.; Li, Q.; Shi, L.; Ling, C. Y.; Wang, J. L. Molybdenum sulfide clusters immobilized on defective graphene: A stable catalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 2289–2294.

    Article  CAS  Google Scholar 

  36. Wu, S. Y.; Chen, H. T. Structure, bonding, and catalytic properties of defect graphene coordinated Pd-Ni nanoparticles. J. Phys. Chem. C 2017, 121, 14668–14677.

    Article  CAS  Google Scholar 

  37. Wang, H.; Ouyang, L. Y.; Zou, G. F.; Sun, C.; Hu, J.; Xiao, X.; Gao, L. J. Optimizing MoS2 edges by alloying isovalent W for robust hydrogen evolution activity. ACS Catal. 2018, 8, 9529–9536.

    Article  CAS  Google Scholar 

  38. Sun, Y. F.; Darling, A. J.; Li, Y. W.; Fujisawa, K.; Holder, C. F.; Liu, H.; Janik, M. J.; Terrones, M.; Schaak, R. E. Defect-mediated selective hydrogenation of nitroarenes on nanostructured WS2. Chem. Sci. 2019, 10, 10310–10317.

    Article  CAS  Google Scholar 

  39. Zhang, J.; Wang, Q.; Wang, L. H.; Li, X. A.; Huang, W. Layer-controllable WS2-reduced graphene oxide hybrid nanosheets with high electrocatalytic activity for hydrogen evolution. Nanoscale 2015, 7, 10391–10397.

    Article  CAS  Google Scholar 

  40. Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308.

    Article  CAS  Google Scholar 

  41. Jiang, J. F.; Zhang, Q. H.; Wang, A. Z.; Zhang, Y.; Meng, F. Q.; Zhang, C. C.; Feng, X. J.; Feng, Y. P.; Gu, L.; Liu, H. et al. A facile and effective method for patching sulfur vacancies of WS2 via nitrogen plasma treatment. Small 2019, 15, 1901791.

    Article  Google Scholar 

  42. Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

    Article  CAS  Google Scholar 

  43. Thripuranthaka, M.; Dattatray, J. L. Temperature dependent phonon shifts in single-layer WS2. ACS Appl. Mater. Interfaces 2014, 6, 1158–1163.

    Article  Google Scholar 

  44. Yang, X. D.; Zheng, Y. P.; Yang, J.; Shi, W.; Zhong, J. H.; Zhang, C. K.; Zhang, X.; Hong, Y. H.; Peng, X. X.; Zhou, Z. Y. et al. Modeling Fe/N/C catalysts in monolayer graphene. ACS Catal. 2017, 7, 139–145.

    Article  CAS  Google Scholar 

  45. Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 Nanosheets: Applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14121–14127.

    Article  CAS  Google Scholar 

  46. Ling, Y.; Yang, Z. H.; Zhang, Q.; Zhang, Y. F.; Cai, W. W.; Cheng, H. S. A self-template synthesis of defect-rich WS2 as a highly efficient electrocatalyst for the hydrogen evolution reaction. Chem. Commun. 2018, 54, 2631–2634.

    Article  CAS  Google Scholar 

  47. Pandey, A.; Mukherjee, A.; Chakrabarty, S.; Chanda, D.; Basu, S. Interface engineering of an RGO/MoS2/Pd 2D heterostructure for electrocatalytic overall water splitting in alkaline medium. ACS Appl. Mater. Interfaces 2019, 11, 42094–42103.

    Article  CAS  Google Scholar 

  48. Chakrabarty, S.; Mukherjee, A.; Basu, S. RGO-MoS2 supported NiCo2O4 catalyst toward solar water splitting and dye degradation. ACS Sustainable Chem. Eng. 2018, 6, 5238–5247.

    Article  CAS  Google Scholar 

  49. Li, H. L.; Yu, K.; Fu, H.; Guo, B. J.; Lei, X.; Zhu, Z. Q. MoS2/graphene hybrid nanoflowers with enhanced electrochemical performances as anode for lithium-ion batteries. J. Phys. Chem. C 2015, 119, 7959–7968.

    Article  CAS  Google Scholar 

  50. Li, J.; Liu, X. M.; Zhang, J. Smart assembly of sulfide heterojunction photocatalysts with well-defined interfaces for direct Z-scheme water splitting under visible light. ChemSusChem 2020, 13, 2996–3004.

    Article  CAS  Google Scholar 

  51. Seo, B.; Jung, G. Y.; Kim, J. H.; Shin, T. J.; Jeong, H. Y.; Kwak, S.; Joo, S. H. Preferential horizontal growth of tungsten sulfide on carbon and insight into active sulfur sites for the hydrogen evolution reaction. Nanoscale 2018, 10, 3838–3848.

    Article  CAS  Google Scholar 

  52. Shi, Y. M.; Zhou, W.; Lu, A. Y.; Fang, W. J.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J. et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012, 12, 2784–2791.

    Article  CAS  Google Scholar 

  53. Song, Y.; Bai, S.; Zhu, L.; Zhao, M. Y.; Han, D. W.; Jiang, S. H.; Zhou, Y. N. Tuning pseudocapacitance via C-S bonding in WS2 nanorods anchored on N, S codoped graphene for high-power lithium batteries. ACS Appl. Mater. Interfaces 2018, 10, 13606–13613.

    Article  CAS  Google Scholar 

  54. Chen, P. Z.; Zhou, T. P.; Wang, S. B.; Zhang, N.; Tong, Y.; Ju, H. X.; Chu, W. S.; Wu, C. Z.; Xie, Y. Dynamic migration of surface fluorine anions on cobalt-based materials to achieve enhanced oxygen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 15471–15475.

    Article  CAS  Google Scholar 

  55. Zhuang, M. H.; Ou, X. W.; Dou, Y. B.; Zhang, L. L.; Zhang, Q. C.; Wu, R. Z.; Ding, Y.; Shao, M. H.; Luo, Z. T. Polymer-embedded fabrication of Co2P nanoparticles encapsulated in N, P-doped graphene for hydrogen generation. Nano Lett. 2016, 16, 4691–4698.

    Article  CAS  Google Scholar 

  56. Xue, N.; Lin, Z.; Li, P. K.; Diao, P.; Zhang, Q. F. Sulfur-doped CoSe2 porous nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 28288–28297.

    Article  CAS  Google Scholar 

  57. Cao, Y.; Xiahou, Y.; Xiang, L. X.; Zhang, X.; Li, H.; Wu, C. S.; Xia, H. B. Fe(II)-assisted one-pot synthesis of ultra-small core-shell Au-Pt nanoparticles as superior catalysts towards the HER and ORR. Nanoscale 2020, 12, 20456–30466.

    Article  CAS  Google Scholar 

  58. Piontek, S.; Andronescu, C.; Zaichenko, A.; Konkena, B.; Puring, K. J.; Marler, B.; Antoni, H.; Sinev, I.; Muhler, M.; Mollenhauer, D. et al. Influence of the Fe: Ni ratio and reaction temperature on the efficiency of (FexNi1-x)9S8 electrocatalysts applied in the hydrogen evolution reaction. ACS Catal. 2018, 8, 987–996.

    Article  CAS  Google Scholar 

  59. Liu, H. H.; Chen, D. L.; Wang, Z. Q.; Jing, H. J.; Zhang, R. Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance. Appl. Catal. B Enveron. 2017, 203, 300–313.

    Article  CAS  Google Scholar 

  60. Tang, Y. J.; Wang, Y.; Wang, X. L.; Li, S. L.; Huang, W.; Dong, L. Z.; Liu, C. H.; Li, Y. F.; Lan, Y. Q. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1600116.

    Article  Google Scholar 

  61. Chen, X. X.; Zhang, J.; Huang, C. P.; Wu, Q.; Wu, J.; Xia, L. G.; Xu, Q. J.; Yao, W. F. Modification of black phosphorus nanosheets with a Ni-containing carbon layer as efficient and stable hydrogen production electrocatalysts. ACS Appl. Mater. Interfaces 2020, 12, 54619–54626.

    Article  CAS  Google Scholar 

  62. Kuang, P. Y.; Tong, T.; Fan, K.; Yu, J. G. In situ fabrication of Ni-Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catal. 2017, 7, 6179–6187.

    Article  CAS  Google Scholar 

  63. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni M.; Dabo, I. Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.

    Article  Google Scholar 

  64. Dal Corso, A. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 2014, 95, 337–350.

    Article  CAS  Google Scholar 

  65. Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (Nos. 52072182, U1732126, and 51872145), the China Postdoctoral Science Foundation (Nos. 2019M650120 and 2020M671554), and the National Synergetic Innovation Center for Advanced Materials (SICAM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhang or Xing’ao Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Guo, X., Zhang, J. et al. Di-defects synergy boost electrocatalysis hydrogen evolution over two-dimensional heterojunctions. Nano Res. 15, 677–684 (2022). https://doi.org/10.1007/s12274-021-3545-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3545-2

Keywords

Navigation