Skip to main content
Log in

Recent advances in Ir/Ru-based perovskite electrocatalysts for oxygen evolution reaction

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Oxygen evolution reaction (OER) is a kinetically harsh four-electron anode reaction that requires a large overpotential to provide current and is of great importance in renewable electrochemical technique. Ir/Ru-based perovskite oxides hold great significance for application as OER electrocatalysts, due to that their multimetal-oxide forms can reduce the use of noble metals, and their compositional tunability can modulate the electronic structure and optimize OER performance. However, high operating potentials and corrosive environments pose a serious challenge to the development of durable Ir-based and Ru-based perovskite electrocatalysts. Tremendous efforts have been dedicated to improving the Ir/Ru-based perovskite activity to enhance the efficiency; however, progress in improving the durability of Ir/Ru-based perovskite electrocatalysts has been rather limited. In this review, the recent research progress of Ir/Ru-based perovskites is reviewed from the perspective of heteroatom doping, structural modulation, and formation of heterostructures. The dissolution mechanism studies of Ir/Ru and experimental attempts to improve the durability of Ir/Ru-based perovskite electrocatalysts are discussed. Challenges and outlooks for further developing Ru- and Ir-based perovskite oxygen electrocatalysts are also presented.

Graphical abstract

摘要

析氧反应(OER)是一种动力学苛刻的四电子阳极反应,需要较大的过电位来提供电流, 因而在可再生电化n学技术中具有重要意义。Ir/Ru 基钙钛矿氧化物作为OER 电催化剂具有重要的应用意义, 因为它们的多金 属氧化物形式可以减少贵金属的使用, 并且它们的成分可调节性可以调节电子结构并优化OER 性能。然 而, 高工作电位和腐蚀性环境对开发耐用的Ir 基和Ru 基钙钛矿电催化剂提出了严峻的挑战。人们一直致 力于提高Ir/Ru 基钙钛矿的活性, 以提高效率; 然而, 在提高Ir/ Ru 基钙钛矿电催化剂耐久性方面的进展相 当有限。因此, 本文从杂原子掺杂、结构调制、异质结构形成等方面综述了近年来Ir/Ru 基钙钛矿的研究 进展。讨论了Ir/Ru 的溶解机理研究和提高Ir/Ru 基钙钛矿电催化剂耐久性的实验尝试。并对进一步发展 Ru 基和Ir 基钙钛矿氧电催化剂面临的挑战和前景进行了展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [54]. Copyright 2017, Wiley–VCH. b Current densities of SrRuO3, Sr0.95Na0.05RuO3 and Sr0.90Na0.10RuO3; c percentage catalytic activity of Sr1-xNaxRuO3 after 20 cycles with respect to initial activity; d crystal structure of SrRuO3 (distorted octahedra) and Na1-xSrxRuO3 (regular octahedra); e ruthenium–oxygen distances in RuO6 octahedra; Fourier transformations from Ru K-edge EXAFS signal before and after OER f of SrRuO3 and g of Sr0.90Na0.10RuO3. Reproduced with permission from Ref. [65]. Copyright 2019, Nature Publishing Group

Fig. 3

Reproduced with permission from Ref. [71]. Copyright 2022, Wiley–VCH

Fig. 4

Reproduced with permission from Ref. [73]. Copyright 2022, Chem. d Identical locations TEM of a region of Sr2CaIrO6 before and after 100 OER cycles; e HRTEM images of initial catalyst and hollow regions composed of Ir and O after 100 cycles. Reproduced with permission from Ref. [22]. Copyright 2022, Nature Publishing Group

Fig. 5

Reproduced with permission from Ref. [75]. Copyright 2021, ACS Publications

Fig. 6

Reproduced with permission from Ref. [80]. Copyright 2021, Wiley–VCH

Fig. 7

Reproduced with permission from Ref. [83]. Copyright 2022, Wiley–VCH

Fig. 8

Reproduced with permission from Ref. [99]. Copyright 2022, Nature Publishing Group. b Preparation and characterization of HION material; c TEM images of folded edge of HION and (inset) corresponding structure model; d pH dependence on steady-state potential at 1 mA·cm−2 for HION, HIO and IrO2; e in situ Raman spectra of HION at different potentials in 0.1 mol·L−1 HClO4 solution; f DEMS signals of O2 products for 18O-labeled HION in 0.1 mol·L−1 HClO4 in H216; g proposed mechanism of 18O-labeled HION to generate 34O2 products and (inset) structural model of HION. Reproduced with permission from Ref. [87]. Copyright 2022, ACS Publications

Similar content being viewed by others

References

  1. Ma W, Wang H, Zhang LL, Zheng JY, Zhou Z. Single-atom catalysts for electrochemical energy storage and conversion. J Energy Chem. 2021;63:170. https://doi.org/10.1016/j.jechem.2021.08.041.

    Article  CAS  Google Scholar 

  2. Ma W, Deng Z, Zhang XJ, Zhang Z, Zhou Z. Regulating the electronic structure of single-atom catalysts for electrochemical energy conversion. J Mater Chem A. 2023;11(24):12643. https://doi.org/10.1039/D3TA00156C.

    Article  CAS  Google Scholar 

  3. Qin PL, Zeng K, Lan ZQ, Huang XT, Liu HZ, Guo J. Enhanced dydrogen storage properties of Mg-Al alloy catalyzed with reduced graphene oxide supported with LaClO. Chin J Rare Met. 2020;44(5):499. https://doi.org/10.13373/j.cnki.cjrm.XY20030007.

    Article  Google Scholar 

  4. Luo WJ, Wang YJ, Cheng CW. ru-based electrocatalysts for hydrogen evolution reaction: recent research advances and perspectives. Mater Today Phys. 2020;15:100274. https://doi.org/10.1016/j.mtphys.2020.100274.

    Article  Google Scholar 

  5. Sun JP, Zhao Z, Li J, Li ZZ, Meng XC. Recent advances in electrocatalytic seawater splitting. Rare Met. 2023;42(3):751. https://doi.org/10.1007/s12598-022-02168-x.

    Article  CAS  Google Scholar 

  6. Dong L, Chan GR, Feng Y, Yao XZ, Yu XY. Regulating Ni site in NiV LDH for efficient electrocatalytic production of formate and hydrogen by glycerol electrolysis. Rare Met. 2022;41(5):1583. https://doi.org/10.1007/s12598-021-01881-3.

    Article  CAS  Google Scholar 

  7. Wang YX, Liu J, Tang XL, Wang Y, An HW, Hong HY. Decarbonization pathways of China’s iron and steel industry toward carbon neutrality. Resour Conserv Recycl. 2023;194:106994. https://doi.org/10.1016/j.resconrec.2023.106994.

    Article  CAS  Google Scholar 

  8. Shen QL, Shen LY, Chen LY, Qin LB, Liu YG, Bedford NM, Ciucci F, Tang ZH. Heterointerface of all-alkynyl-protected Au28 nanoclusters anchored on NiFe-LDHs boosts oxygen evolution reaction: a case to unravel ligand effect. Rare Met. 2023. https://doi.org/10.1007/s12598-023-02438-2.

  9. Xu JJ, Gu HY, Chen MD, Li XP, Zhao HW, Yang HB. Dual Z-scheme Bi3TaO7/Bi2S3/SnS2 photocatalyst with high performance for Cr(VI) reduction and TC degradation under visible light irradiation. Rare Met. 2022;41(7):2417. https://doi.org/10.1007/s12598-022-01988-1.

  10. Sun H, Zhao FG, Fen YC, Ren HP, Zhang YH. Activation and hydrogen absorption properties of Mg22Y2Ni10Cu2 hydrogen storage alloy. Chin J Rare Met. 2020;44(4):387. https://doi.org/10.13373/j.cnki.cjrm.xy18120013.

    Article  CAS  Google Scholar 

  11. Wu T, Sun MZ, Huang BL. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 2022;41(7):2169. https://doi.org/10.1007/s12598-021-01914-x.

  12. Sun JP, Zheng Y, Zhang ZS, Meng XC, Li ZZ. Modulation of d-orbital to realize enriched electronic cobalt sites in cobalt sulfide for enhanced hydrogen evolution in electrocatalytic water/seawater splitting. Rare Met. 2023.https://doi.org/10.1007/s12598-023-02427-5.

  13. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem Soc Rev. 2015;44(8):2060. https://doi.org/10.1039/C4CS00470A.

    Article  CAS  PubMed  Google Scholar 

  14. Yin WJ, Weng B, Ge J, Sun Q, Li Z, Yan Y. Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ Sci. 2019;12(2):442. https://doi.org/10.1039/C8EE01574K.

    Article  CAS  Google Scholar 

  15. Wang T, Cao X, Jiao L. Progress in hydrogen production coupled with electrochemical oxidation of small molecules. Angew Chem Int Ed. 2022;61(51):202213328. https://doi.org/10.1002/anie.202213328.

    Article  CAS  Google Scholar 

  16. Li J, Chen H, Liu Y, Gao R, Zou X. In situ structural evolution of a nickel boride catalyst: synergistic geometric and electronic optimization for the oxygen evolution reaction. J Mater Chem A. 2019;7(10):5288. https://doi.org/10.1039/C9TA00489K.

    Article  CAS  Google Scholar 

  17. Wu ZR, Zhong YT, Liu XG, Li L. PdPbBi nanoalloys anchored reduced graphene-wrapped metal-organic framework-derived catalyst for enhancing ethylene glycol electrooxidation. Rare Met. 2023;42(2):503. https://doi.org/10.1007/s12598-022-02180-1.

  18. Zheng X, Cao Y, Wu Z, Ding W, Xue T, Wang J, Chen Z, Han X, Deng Y, Hu W. Rational design and spontaneous sulfurization of NiCo-(oxy)hydroxysulfides nanosheets with modulated local electronic configuration for enhancing oxygen electrocatalysis. Adv Energy Mater. 2022;12(15):2103275. https://doi.org/10.1002/aenm.202103275.

    Article  CAS  Google Scholar 

  19. Zhang D, Li M, Yong X, Song H, Waterhouse GIN, Yi Y, Xue B, Zhang D, Liu B, Lu S. Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media. Nat Commun. 2023;14:2517. https://doi.org/10.1038/s41467-023-38213-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu ZY, Chen FY, Li B, Yu SW, Finfrock YZ, Meira DM, Yan QQ, Zhu P, Chen MX, Song TW, Yin Z, Liang HW, Zhang S, Wang G, Wang H. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat Mater. 2023;22:100. https://doi.org/10.1038/s41563-022-01380-5.

    Article  CAS  PubMed  Google Scholar 

  21. Liu S, Hu Z, Wu Y, Zhang J, Zhang Y, Cui B, Liu C, Hu S, Zhao N, Han X, Cao A, Chen Y, Deng Y, Hu W. Dislocation-strained irni alloy nanoparticles driven by thermal shock for the hydrogen evolution reaction. Adv Mater. 2020;32(48):2006034. https://doi.org/10.1002/adma.202006034.

    Article  CAS  Google Scholar 

  22. Retuerto M, Pascual L, Torrero J, Salam MA, Tolosana-Moranchel A, Gianolio D, Ferrer P, Kayser P, Wilke V, Stiber S, Celorrio V, Mokthar M, Sanchez DG, Gago AS, Friedrich KA, Pena MA, Alonso JA, Rojas S. Highly active and stable OER electrocatalysts derived from Sr2MIrO6 for proton exchange membrane water electrolyzers. Nat Commun. 2022;13:7935. https://doi.org/10.1038/s41467-022-35631-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu J, Chen C, Han Z, Yang Y, Li J, Deng Q. Recent advances in oxygen electrocatalysts based on perovskite oxides. Nanomaterials. 2019;9(8):1161. https://doi.org/10.3390/nano9081161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang S, Li J, Wang E. Recent progress of ruthenium-based nanomaterials for electrochemical hydrogen evolution. ChemElectroChem. 2020;7:4526. https://doi.org/10.1002/celc.202001149.

    Article  CAS  Google Scholar 

  25. Ying J, Chen JB, Xiao YX, Cordoba D, Ozoemena KI, Yang XY. Recent advances in Ru-based electrocatalysts for oxygen evolution reaction. J Mater Chem A. 2023;11(4):1634. https://doi.org/10.1039/D2TA07196G.

    Article  CAS  Google Scholar 

  26. Zhang M, Zhang K, Ai X, Liang X, Zhang Q, Chen H, Zou X. Theory-guided electrocatalyst engineering: from mechanism analysis to structural design. Chinese J Catal. 2022;43(12):2987. https://doi.org/10.1016/S1872-2067(22)64103-2.

    Article  CAS  Google Scholar 

  27. Hu C, Xu J, Tan Y, Huang X. Recent advances of ruthenium-based electrocatalysts for hydrogen energy. Trends Chem. 2023;5(3):225. https://doi.org/10.1016/j.trechm.2023.01.002.

    Article  CAS  Google Scholar 

  28. Liu Y, Huang H, Xue L, Sun J, Wang X, Xiong P, Zhu J. Recent advances in the heteroatom doping of perovskite oxides for efficient electrocatalytic reactions. Nanoscale. 2021;13:19840. https://doi.org/10.1039/D1NR05797A.

    Article  CAS  PubMed  Google Scholar 

  29. Wu H, Wang Y, Shi Z, Wang X, Yang J, Xiao M, Ge J, Xing W, Liu C. Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis. J Mater Chem A. 2022;10(25):13170. https://doi.org/10.1039/D1TA10324E.

    Article  CAS  Google Scholar 

  30. Wei Y, Weng Z, Guo L, An L, Yin J, Sun S, Da P, Wang R, Xi P, Yan CH. Activation strategies of perovskite-type structure for applications in oxygen-related electrocatalysts. Small Methods. 2021;5(6):2100012. https://doi.org/10.1002/smtd.202100012.

    Article  CAS  Google Scholar 

  31. Jiang Z, Xiao Z, Tao Z, Zhang X, Lin S. A significant enhancement of bulk charge separation in photoelectrocatalysis by ferroelectric polarization induced in CdS/BaTiO3 nanowires. RSC Adv. 2021;11:26534. https://doi.org/10.1039/D1RA04561J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hua B, Li M, Pang W, Tang W, Zhao S, Jin Z, Zeng Y, Shalchi AB, Luo JL. Activating p-blocking centers in perovskite for efficient water splitting. Chem. 2018;4(12):2902. https://doi.org/10.1016/j.chempr.2018.09.012.

    Article  CAS  Google Scholar 

  33. Zhu Y, Tahini HA, Hu Z, Chen ZG, Zhou W, Komarek AC, Lin Q, Lin HJ, Chen CT, Zhong Y, Fernandez-Diaz MT, Smith SC, Wang H, Liu M, Shao Z. Boosting oxygen evolution reaction by creating both metal ion and lattice-oxygen active sites in a complex oxide. Adv Mater. 2020;32(1):1905025. https://doi.org/10.1002/adma.201905025.

    Article  CAS  Google Scholar 

  34. Liu D, Zhou P, Bai H, Ai H, Du X, Chen M, Liu D, W F, Lo KH, Kwok CT, Chen S, Wang S, Xing G, Wang X, Pan H. Development of perovskite oxide-based electrocatalysts for oxygen evolution reaction. Small. 2021;17(43):2101605. https://doi.org/10.1002/smll.202101605.

    Article  CAS  Google Scholar 

  35. Song HJ, Yoon H, Ju B, Kim DW. Highly efficient perovskite-based electrocatalysts for water oxidation in acidic environments: a mini review. Adv Energy Mater. 2020;11(27):2002428. https://doi.org/10.1002/aenm.202002428.

    Article  CAS  Google Scholar 

  36. Yu J, He Q, Yang G, Zhou W, Shao Z, Ni M. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 2019;9(11):9973. https://doi.org/10.1021/acscatal.9b02457.

    Article  CAS  Google Scholar 

  37. She L, Zhao G, Ma T, Chen J, Sun W, Pan H. On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment. Adv Funct Mater. 2021;32(5):2108465. https://doi.org/10.1002/adfm.202108465.

    Article  CAS  Google Scholar 

  38. Liu Y, Liang X, Chen H, Gao R, Shi L, Yang L, Zou X. Iridium-containing water-oxidation catalysts in acidic electrolyte. Chinese J Catal. 2021;42(7):1054. https://doi.org/10.1016/S1872-2067(20)63722-6.

    Article  CAS  Google Scholar 

  39. Diaz-Morales O, Raaijman S, Kortlever R, Kooyman PJ, Wezendonk T, Gascon J, Fu WT, Koper MT. Iridium-based double perovskites for efficient water oxidation in acid media. Nat Commun. 2016;7:12363. https://doi.org/10.1038/ncomms12363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miao X, Zhang L, Wu L, Hu Z, Shi L, Zhou S. Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation. Nat Commun. 2019;10:3809. https://doi.org/10.1038/s41467-019-11789-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang H, Zhou M, Choudhury P, Luo H. Perovskite oxides as bifunctional oxygen electrocatalysts for oxygen evolution/reduction reactions-a mini review. Appl Mater Today. 2019;16:56. https://doi.org/10.1016/j.apmt.2019.05.004.

    Article  CAS  Google Scholar 

  42. Pu Z, Liu T, Zhang G, Ranganathan H, Chen Z, Sun S. Electrocatalytic oxygen evolution reaction in acidic conditions: recent progress and perspectives. Chemsuschem. 2021;14(21):4636. https://doi.org/10.1002/cssc.202101461.

    Article  CAS  PubMed  Google Scholar 

  43. Yu Q, Wang J, Li H, Li R, Zeng S, Li R, Yao Q, Chen H, Qu K, Zheng Y. Natural DNA-derived highly-graphitic N, P, S-tridoped carbon nanosheets for multiple electrocatalytic applications. Chem Eng J. 2022;429:132102. https://doi.org/10.1016/j.cej.2021.132102.

    Article  CAS  Google Scholar 

  44. Guo Y, Park T, Yi JW, Henzie J, Kim J, Wang Z, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv Mater. 2019;31(17):1807134. https://doi.org/10.1002/adma.201807134.

    Article  CAS  Google Scholar 

  45. Huang ZF, Wang J, Peng Y, Jung CY, Fisher A, Wang X. Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Adv Energy Mater. 2017;7(23):1700544. https://doi.org/10.1002/aenm.201700544.

    Article  CAS  Google Scholar 

  46. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev. 2017;46(2):337. https://doi.org/10.1039/C6CS00328A.

    Article  CAS  PubMed  Google Scholar 

  47. Chen H, Zou X. Intermetallic borides: structures, synthesis and applications in electrocatalysis. Inorg Chem Front. 2020;7:2248. https://doi.org/10.1039/D0QI00146E.

    Article  CAS  Google Scholar 

  48. Paoli EA, Masin F, Frydendal R, Deiana D, Schlaup C, Malizia M, Hansen TW, Horc S, Stephens IEL, Chorkendorff I. Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles. Chem Sci. 2015;6:190. https://doi.org/10.1039/C4SC02685C.

    Article  CAS  PubMed  Google Scholar 

  49. Cherevko S, Geiger S, Kasian O, Mingers A, Mayrhofer KJJ. Oxygen evolution activity and stability of iridium in acidic media. Part 1-Metallic iridium. J Electroanal Chem. 2016;773:69. https://doi.org/10.1016/j.jelechem.2016.04.033.

    Article  CAS  Google Scholar 

  50. Cherevko S, Geiger S, Kasian O, Mingers A, Mayrhofer KJJ. Oxygen evolution activity and stability of iridium in acidic media. Part 2-electrochemically grown hydrous iridium oxide. J Electroanal Chem. 2016;774:102. https://doi.org/10.1016/j.jelechem.2016.05.015.

    Article  CAS  Google Scholar 

  51. Casalongue H, Ng ML, Kaya S, Friebel D, Ogasawara H, Nilsson A. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew Chem Int Ed. 2014;126(28):7297. https://doi.org/10.1002/ange.201402311.

    Article  Google Scholar 

  52. Mo Y, Stefan I, Cai WB, Dong J, Carey P, Scherson DA. In situ iridium LIII-edge X-ray absorption and surface enhanced raman spectroscopy of electrodeposited iridium oxide films in aqueous electrolytes. J Phys Chem B. 2002;106(14):3681. https://doi.org/10.1021/jp014452p.

    Article  CAS  Google Scholar 

  53. Ooka H, Wang Y, Yamaguchi A, Hatakeyama M, Nakamura S, Hashimoto K, Nakamura R. Legitimate intermediates of oxygen evolution on iridium oxide revealed by in situ electrochemical evanescent wave spectroscopy. Phys Chem Chem Phys. 2016;18(22):15199. https://doi.org/10.1039/C6CP02385A.

    Article  CAS  PubMed  Google Scholar 

  54. Kasian O, Grote JP, Geiger S, Cherevko S, Mayrhofer KJJ. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium. Angew Chem Int Ed. 2018;57(9):2488. https://doi.org/10.1002/anie.201709652.

    Article  CAS  Google Scholar 

  55. Lebedev D, Ezhov R, Heras DJ, Comas VA, Kaeffer N, Willinger M, Solans MX, Huang X, Pushkar Y, Coperet C. Atomically dispersed iridium on indium tin oxide efficiently catalyzes water oxidation. ACS Cent Sci. 2020;6(7):1189. https://doi.org/10.1021/acscentsci.0c00604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Minguzzi A, Locatelli C, Lugaresi O, Achilli E, Cappelletti G, Scavini M, Coduri M, Masala P, Sacchi B, Vertova A, Ghigna P, Rondinini S. Easy accommodation of different oxidation states in iridium oxide nanoparticles with different hydration degree as water oxidation electrocatalysts. ACS Catal. 2015;5(9):5104. https://doi.org/10.1021/acscatal.5b01281.

    Article  CAS  Google Scholar 

  57. Loncar A, Escalera-Lopez D, Cherevko S, Hodnik N. Inter-relationships between oxygen evolution and iridium dissolution mechanisms. Angew Chem Int Ed. 2022;61(14):202114437. https://doi.org/10.1002/anie.202114437.

    Article  CAS  Google Scholar 

  58. Zagalskaya A, Alexandrov V. Mechanistic study of IrO2 dissolution during the electrocatalytic oxygen evolution reaction. J Phys Chem Lett. 2020;11(7):2695. https://doi.org/10.1021/acs.jpclett.0c00335.

    Article  CAS  PubMed  Google Scholar 

  59. Geiger S, Kasian O, Ledendecker M, Fu WT, Diaz-Morales O, Li Z, Ludwig A, Mayrhofer KJJ, Pizzutilo E, Koper MTM, Oellers T, Fruchter L, Cherevko S. The stability number as a metric for electrocatalyst stability benchmarking. Nat Catal. 2018;11(7):505. https://doi.org/10.1038/s41929-018-0085-6.

    Article  CAS  Google Scholar 

  60. Li RQ, Zeng S, Sang B, Xue C, Qu K, Zhang Y, Zhang W, Zhang G, Liu X, Deng J, Fontaine O, Zhu Y. Regulating electronic structure of porous nickel nitride nanosheet arrays by cerium doping for energy-saving hydrogen production coupling hydrazine oxidation. Nano Res. 2022;16:2543. https://doi.org/10.1007/s12274-022-4912-3.

    Article  CAS  Google Scholar 

  61. Li Z, Li C, Chen J, Xing X, Wang Y, Zhang Y, Yang M, Zhang G. Confined synthesis of MoS2 with rich Co-doped edges for enhanced hydrogen evolution performance. J Energy Chem. 2022;70:18. https://doi.org/10.1016/j.jechem.2022.01.001.

    Article  CAS  Google Scholar 

  62. Wang Y, Li X, Mg Z, Zhang J, Chen Z, Zheng X, Tian Z, Zhao N, Han X, Zaghib K, Wang Y, Deng Y, Hu W. Highly active and durable single-atom tungsten-doped NiS0.5Se0.5 nanosheet @ NiS0.5Se0.5 nanorod heterostructures for water splitting. Adv Mater. 2022;34(12):2107053. https://doi.org/10.1002/adma.202107053.

    Article  CAS  Google Scholar 

  63. Guan X, Wu Q, Li H, Zeng S, Yao Q, Li R, Chen H, Zheng Y, Qu K. Identifying the roles of Ru single atoms and nanoclusters for energy-efficient hydrogen production assisted by electrocatalytic hydrazine oxidation. Appl Catal B. 2023;323:122145. https://doi.org/10.1016/j.apcatb.2022.122145.

    Article  CAS  Google Scholar 

  64. Li Z, Wang D, Li H, Ma M, Zhang Y, Yan Z, Agnoli S, Zhang G, Sun X. Single-atom Zn for boosting supercapacitor performance. Nano Res. 2021;15:1715. https://doi.org/10.1007/s12274-021-3839-4.

    Article  CAS  Google Scholar 

  65. Retuerto M, Pascual L, Calle-Vallejo F, Ferrer P, Gianolio D, Pereira AG, Garcia A, Torrero J, Fernandez DMT, Bencok P, Pena MA, Fierro JLG, Rojas S. Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media. Nat Commun. 2019;10:2041. https://doi.org/10.1038/s41467-019-09791-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rodríguez GI, Galyamin D, Pascual L, Ferrer P, Peña MA, Grinter D, Held G, Abdel Salam M, Mokhtar M, Narasimharao K, Retuerto M, Rojas S. Enhanced stability of SrRuO3 mixed oxide via monovalent doping in Sr1-xKxRuO3 for the oxygen evolution reaction. J Power Sources. 2022;521(15):230950. https://doi.org/10.1016/j.jpowsour.2021.230950.

    Article  CAS  Google Scholar 

  67. Wang Y, Wu J, Lu X, Guo Y, Zhao H, Tang X. A-site doped ruthenium perovskite bifunctional electrocatalysts with high OER and ORR activity. J Alloys Compd. 2022;9120:165770. https://doi.org/10.1016/j.jallcom.2022.165770.

    Article  CAS  Google Scholar 

  68. Hirai S, Ohno T, Uemura R, Maruyama T, Furunaka M, Fukunaga R, Chen WT, Suzuki H, Matsuda T, Yagi S. Ca1−xSrxRuO3 perovskite at the metal-insulator boundary as a highly active oxygen evolution catalyst. J Mater Chem A. 2019;7(25):15387. https://doi.org/10.1039/C9TA03789F.

    Article  CAS  Google Scholar 

  69. Subramanian MA, Sleight AW. ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy. Solid State Sci. 2002;4(3):347. https://doi.org/10.1006/jssc.2002.9634.

    Article  CAS  Google Scholar 

  70. Ebbinghaus SG, Weidenkaff A, Cava RJ. Structural investigations of ACu3Ru4O12 (A=Na, Ca, Sr, La, Nd)-a comparison between XRD-rietveld and EXAFS Results. J Solid State Chem. 2002;167(1):126. https://doi.org/10.1006/jssc.2002.9634.

    Article  CAS  Google Scholar 

  71. Liu W, Kawano K, Kamiko M, Kato Y, Okazaki Y, Yamada I, Yagi S. Effects of A-site cations in quadruple perovskite ruthenates on oxygen evolution catalysis in acidic aqueous solutions. Small. 2022;18(23):2202439. https://doi.org/10.1002/smll.202202439.

    Article  CAS  Google Scholar 

  72. Seitz LC, Dickens CF, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang HY, Norskov JK, Jaramillo TF. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science. 2016;353(6303):1011. https://doi.org/10.1126/science.aaf5050.

    Article  CAS  PubMed  Google Scholar 

  73. Song CW, Suh H, Bak J, Bae HB, Chung SY. Dissolution-induced surface roughening and oxygen evolution electrocatalysis of alkaline-earth iridates in acid. Chem. 2019;5(12):3243. https://doi.org/10.1016/j.chempr.2019.10.011.

    Article  CAS  Google Scholar 

  74. Ye X, Song S, Li L, Chang YC, Qin S, Liu Z, Huang YC, Zhou J, Zhang LJ, Dong CL, Pao CW, Lin HJ, Chen CT, Hu Z, Wang JQ, Long Y. A’-B intersite cooperation-enhanced water splitting in quadruple perovskite oxide CaCu3Ir4O12. Chem Mater. 2021;33(23):9295. https://doi.org/10.1021/acs.chemmater.1c03015.

    Article  CAS  Google Scholar 

  75. Dai J, Zhu Y, Yin Y, Tahini HA, Guan D, Dong F, Lu Q, Smith SC, Zhang X, Wang H, Zhou W, Shao Z. Super-exchange interaction induced overall optimization in ferromagnetic perovskite oxides enables ultrafast water oxidation. Small. 2019;15(39):1903120. https://doi.org/10.1002/smll.201903120.

    Article  CAS  Google Scholar 

  76. Liu HJ, Chiang CY, Wu YS, Lin LR, Ye YC, Huang YH, Tsai JL, Lai YC, Munprom R. Breaking the relation between activity and stability of the oxygen-evolution reaction by highly doping ru in wide-band-gap SrTiO3 as electrocatalyst. ACS Catal. 2022;12(10):6132. https://doi.org/10.1021/acscatal.1c05539.

    Article  CAS  Google Scholar 

  77. Liang X, Shi L, Liu Y, Chen H, Si R, Yan W, Zhang Q, Li GD, Yang L. Activating inert, nonprecious perovskite matrix by iridium dopants for efficient oxygen evolution reaction in acid. Angew Chem Int Ed. 2019;58(23):7631. https://doi.org/10.1002/anie.201900796.

    Article  CAS  Google Scholar 

  78. Chen Y, Sun Y, Wang M, Wang J, Li H, Xi S, Wei C, Xi P, Sterbinsky GE, Freeland JW, Fisher AC, Ager JW, Feng Z, Xu ZJ. Lattice site-dependent metal leaching in perovskites toward a honeycomb-like water oxidation catalyst. Sci Adv. 2021;7(50):178. https://doi.org/10.1126/sciadv.abk1788.

    Article  CAS  Google Scholar 

  79. Chen Y, Li H, Wang J, Du Y, Xi S, Sun Y, Sherburne M, Ager JW, Fisher AC, Xu ZJ. Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat Commun. 2019;10:572. https://doi.org/10.1038/s41467-019-08532-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li L, Sun H, Hu Z, Zhou J, Huang YC, Huang H, Song S, Pao CW, Chang YC, Komarek AC, Lin HJ, Chen CT, Dong CL, Wang JQ, Zhang L. In situ/operando capturing unusual Ir6+ facilitating ultrafast electrocatalytic water oxidation. Adv Funct Mater. 2021;31(43):2104746. https://doi.org/10.1002/adfm.202104746.

    Article  CAS  Google Scholar 

  81. You M, Gui L, Ma X, Wang Z, Xu Y, Zhang J, Sun J, He B, Zhao L. Electronic tuning of SrIrO3 perovskite nanosheets by sulfur incorporation to induce highly efficient and long-lasting oxygen evolution in acidic media. Appl Catal B. 2021;98(5):120562. https://doi.org/10.1016/j.apcatb.2021.120562.

    Article  CAS  Google Scholar 

  82. Maria R, Federico CV, Laura P, Gunnar L, Maria T, Diaz F, Mark C, Jagannatha G, Miguel AP, Joke H, Martha G, Sergio R. La1.5Sr0.5NiMn0.5Ru0.5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity. ACS Appl Mater Interfaces. 2019;11(24):21454. https://doi.org/10.1021/acsami.9b02077.

    Article  CAS  Google Scholar 

  83. Yang L, Shi L, Chen H, Liang X, Tian B, Zhang K, Zou Y, Zou X. A highly active, long-lived oxygen evolution electrocatalyst derived from open-framework iridates. Adv Mater. 2023;35(12):2208539. https://doi.org/10.1002/adma.202208539.

    Article  CAS  Google Scholar 

  84. Yang L, Yu G, Ai X, Yan W, Duan H, Chen W, Li X, Wang T, Zhang C, Huang X, Chen JS, Zou X. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat Commun. 2018;9:5236. https://doi.org/10.1038/s41467-018-07678-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang Q, Liang X, Chen H, Yan W, Shi L, Liu Y, Li J, Zou X. Identifying key structural subunits and their synergism in low-iridium triple perovskites for oxygen evolution in acidic media. Chem Mater. 2020;32(9):3904. https://doi.org/10.1021/acs.chemmater.0c00081.

    Article  CAS  Google Scholar 

  86. Zhang L, Jang H, Li Z, Liu H, Kim MG, Liu X, Cho J. SrIrO3 modified with laminar Sr2IrO4 as a robust bifunctional electrocatalyst for overall water splitting in acidic media. Chem Eng J. 2021;419:129604. https://doi.org/10.1016/j.cej.2021.129604.

    Article  CAS  Google Scholar 

  87. Chen H, Shi L, Sun K, Zhang K, Liu Q, Ge J, Liang X, Tian B, Huang Y, Shi Z, Wang Z, Zhang W, Liu M, Zou X. Protonated iridate nanosheets with a highly active and stable layered perovskite framework for acidic oxygen evolution. ACS Catal. 2022;12(14):8658. https://doi.org/10.1021/acscatal.2c01241.

    Article  CAS  Google Scholar 

  88. Liu S, Zhang Y, Mao X, Li L, Zhang Y, Li L, Pan Y, Li X, Wang L, Shao Q, Xu Y, Huang X. Ultrathin perovskite derived Ir-based nanosheets for high-performance electrocatalytic water splitting. Energy Environ Sci. 2022;15(4):1672. https://doi.org/10.1039/D1EE03687D.

    Article  Google Scholar 

  89. Yang L, Zhang K, Chen H, Shi L, Liang X, Wang X, Liu Y, Feng Q, Liu M, Zou X. An ultrathin two-dimensional iridium-based perovskite oxide electrocatalyst with highly efficient 001 facets for acidic water oxidation. J Energy Chem. 2022;66:619. https://doi.org/10.1016/j.jechem.2021.09.016.

    Article  CAS  Google Scholar 

  90. Gao R, Zhang Q, Chen H, Chu X, Li GD, Zou X. Efficient acidic oxygen evolution reaction electrocatalyzed by iridium-based 12L-perovskites comprising trinuclear face-shared IrO6 octahedral strings. J Energy Chem. 2020;47:291. https://doi.org/10.1016/j.jechem.2020.02.002.

    Article  Google Scholar 

  91. Shin S, Kwon T, Kim K, Kim M, Kim MH, Lee Y. Single-phase perovskite SrIrO3 nanofibers as a highly efficient electrocatalyst for a pH-universal oxygen evolution reaction. ACS Appl Energy Mater. 2022;5(5):6146. https://doi.org/10.1021/acsaem.2c00551.

    Article  CAS  Google Scholar 

  92. Han N, Feng S, Liang Y, Wang J, Zhang W, Guo X, Ma Q, Liu Q, Guo W, Zhou Z, Xie S, Wan K, Jiang Y, Vlad A, Guo Y, Gaigneaux EM, Zhang C, Fransaer J, Zhang X. Achieving efficient electrocatalytic oxygen evolution in acidic media on yttrium ruthenate pyrochlore through cobalt incorporation. Adv Funct Mater. 2023;33(20):2208399. https://doi.org/10.1002/adfm.202208399.

    Article  CAS  Google Scholar 

  93. Sun W, Wang Z, Zhou Z, Wu Y, Zaman WQ, Tariq M, Cao LM, Gong XQ, Yang J. A promising engineering strategy for water electro-oxidation iridate catalysts via coordination distortion. Chem Commun. 2019;55(41):5801. https://doi.org/10.1039/C9CC02447F.

    Article  CAS  Google Scholar 

  94. Bobowski JS, Kikugawa N, Miyoshi T, Suwa H, Xu HS, Yonezawa S, Sokolov DA, Mackenzie AP, Maeno Y. Improved single-crystal growth of Sr2RuO4. Condens Matter. 2019;4(1):6. https://doi.org/10.3390/condmat4010006.

    Article  CAS  Google Scholar 

  95. Fittipaldi R, Hartmann R, Mercaldo MT, Komori S, Bjørlig A, Kyung W, Yasui Y, Miyoshi T, Olthof LABO, Garcia CMP, Granata V, Keren I, Higemoto W, Suter A, Prokscha T, Romano A, Noce C, Kim C, MaenoY SE, Kalisky B, Robinson JWA, Cuoco M, Salman Z, Di BA. Unveiling unconventional magnetism at the surface of Sr2RuO4. Nat Commun. 2021;12:5792. https://doi.org/10.1038/s41467-021-26020-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kim J, Mun J, Garcia CMP, Kim B, Perry RS, Jo Y, Im H, Lee HG, Ko EK, Chang SH, Chung SB, Kim M, Robinson JWA, Yonezawa S, Maeno Y, Wang L, Noh TW. Superconducting Sr2RuO4 thin films without out-of-phase boundaries by higher-order ruddlesden-popper intergrowth. Nano Lett. 2021;21(10):4185. https://doi.org/10.1021/acs.nanolett.0c04963.

    Article  CAS  PubMed  Google Scholar 

  97. Zhu Y, Tahini HA, Hu Z, Dai J, Chen Y, Sun H, Zhou W, Liu M, Smith SC, Wang H, Shao Z. Unusual synergistic effect in layered Ruddlesden-Popper oxide enables ultrafast hydrogen evolution. Nat Commun. 2019;10:149. https://doi.org/10.1038/s41467-018-08117-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen H, Zhang M, Wang Y, Sun K, Wang L, Xie Z, Shen Y, Han X, Yang L, Zou X. Crystal phase engineering of electrocatalysts for energy conversions. Nano Res. 2022;15:10194. https://doi.org/10.1007/s12274-022-4605-y.

    Article  Google Scholar 

  99. Zhang Y, Arpino KE, Yang Q, Kikugawa N, Sokolov DA, Hicks CW, Liu J, Felser C, Li G. Observation of a robust and active catalyst for hydrogen evolution under high current densities. Nat Commun. 2022;13:7784. https://doi.org/10.1038/s41467-023-36416-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li RQ, Wan XY, Chen BL, Cao RY, Ji QH, Deng J, Qu KG, Wang XB, Zhu YC. Hierarchical Ni3N/Ni0.2Mo0.8N heterostructure nanorods arrays as efficient electrocatalysts for overall water and urea electrolysis. Chem Eng J. 2021;409:128240. https://doi.org/10.1016/j.cej.2020.128240.

    Article  CAS  Google Scholar 

  101. Wang T, Cao X, Jiao L. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production. eScience. 2021;1(1):69. https://doi.org/10.1016/j.esci.2021.09.002.

    Article  Google Scholar 

  102. Wang T, Miao L, Zheng S, Qin H, Cao X, Yang L, Jiao L. Interfacial engineering of Ni3N/Mo2N heterojunctions for urea-assisted hydrogen evolution reaction. ACS Catal. 2023;13(7):4091. https://doi.org/10.1021/acscatal.3c00113.

    Article  CAS  Google Scholar 

  103. Fan M, Liang X, Li Q, Cui L, He X, Zou X. Boron: a key functional component for designing high-performance heterogeneous catalysts. Chin Chem Lett. 2023;34(1):107275. https://doi.org/10.1016/j.cclet.2022.02.080.

    Article  CAS  Google Scholar 

  104. Akbashev AR, Zhang L, Mefford JT, Park J, Butz B, Luftman H, Chueh WC, Vojvodic A. Activation of ultrathin SrTiO3 with subsurface SrRuO3 for the oxygen evolution reaction. Energy Environ Sci. 2018;11(7):1762. https://doi.org/10.1039/C8EE00210J.

    Article  CAS  Google Scholar 

  105. You M, Xu Y, He B, Zhang J, Gui L, Xu J, Zhou W, Zhao L. Realizing robust and efficient acidic oxygen evolution by electronic modulation of 0D/2D CeO2 quantum dots decorated SrIrO3 nanosheets. Appl Catal B. 2022;315(15):121579. https://doi.org/10.1016/j.apcatb.2022.121579.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Research and Development Program of Hainan Province (No. ZDYF2022GXJS006), the National Natural Science Foundation of China (Nos. 52231008, 52201009 and 52001227), Hainan Provincial Natural Science Foundation of China (No. 223RC401), the Education Department of Hainan Province (No. Hnky2023ZD-2) and the Starting Research Funds of the Hainan University of China (Nos. KYQD(ZR)-21105 and XJ2300002951).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Hong Li or Yi-Da Deng.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, ZQ., Fan, CZ., Pan, JY. et al. Recent advances in Ir/Ru-based perovskite electrocatalysts for oxygen evolution reaction. Rare Met. 43, 2891–2912 (2024). https://doi.org/10.1007/s12598-024-02623-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-024-02623-x

Keywords

Navigation