Skip to main content
Log in

Two-dimensional bifunctional electrocatalyst (Mo–NiFe-LDH) with multilevel structure for highly efficient overall water splitting

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To effectively address energy challenges, it is crucial to explore efficient and stable bifunctional non-precious metal catalysts. In this study, a Mo-doped nickel–iron layered double hydroxide with flower-cluster architecture was successfully prepared by a one-step hydrothermal method, which demonstrated a good water splitting performance. After an appropriate amount of Mo doping, some lattice distortions in the material provided reactive sites for the adsorption and conversion of intermediates, thus optimising the charge distribution of the material. Moreover, the multidimensional void structures formed after doping had a larger specific surface area and accelerated the penetration of the electrolyte, which significantly improved the activity of the catalyst in alkaline media. At 10 mA·cm−2, the hydrogen and oxygen evolution overpotentials of Mo-doped nickel–iron double hydroxides (Mo–NiFe LDH/NF-0.2) were 167 and 220 mV, respectively, with an excellent durability up to 24 h. When the Mo–NiFe LDH/NF-0.2 catalyst was used as the cathode and anode of an electrolytic cell, the catalyst achieved a current density of 10 mA·cm−2 at an applied voltage of 1.643 V. This study provides a novel approach for designing excellent bifunctional electrocatalysts containing nonprecious metals.

Graphical abstract

摘要

面对日益严重的能源问题,探索高效稳定的双功能非贵金属催化剂至关重要。本文采用一步水热法成功制备了钼掺杂的花簇状镍铁层状双氢氧化催化剂,并取得了良好的整体水分解效果。在适量掺杂钼后,材料中的一些晶格畸变为中间产物的吸附和转化提供了反应位点,从而优化了材料的电荷分布。此外,掺杂后形成的多维空隙结构具有更大的比表面积,加速了电解质的渗透,从而显著提高了催化剂在碱性介质中的催化活性。在 10 mA·cm-2 的电流密度下,Mo–NiFe LDH/NF-0.2 的析氢和析氧过电位分别为 167和 220 mV,并且具有长达 24 h 的优异耐久性。Mo–NiFe LDH/NF-0.2 催化剂作为电解池的阴极和阳极,只需提供 1.643V 的电压即可实现 10 mA·cm-2 的电流密度。这项研究为设计含有非贵金属的优良双功能电催化剂提供了新方案。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang ZJ, Guo P, Cao SF, Chen HY, Zhou SN, Liu HH, Wang HW, Zhang JB, Liu SY, Wei SX, Sun DF, Lu XQ. Contemporaneous inverse manipulation of the valence configuration to preferred Co2+ and Ni3+ for enhanced overall water electrocatalysis. Appl Catal B. 2021;284:119725. https://doi.org/10.1016/j.apcatb.2020.119725.

    Article  CAS  Google Scholar 

  2. Qin YC, Zhang WL, Wang FQ, Li JJ, Ye JY, Sheng X, Li CX, Liang XY, Liu P, Wang XP, Zheng X, Ren YL, Xu CL, Zhang ZC. Extraordinary p-d hybridization interaction in heterostructural Pd-PdSe nanosheets boosts C–C bond cleavage of ethylene glycol electrooxidation. Angew Chem Int Ed Engl. 2022;61(16):e2022008. https://doi.org/10.1002/anie.202200899.

    Article  CAS  Google Scholar 

  3. Xu XL, Wang S, Guo SQ, San Hui K, Ma JM, Dinh DA, Hui KN, Wang H, Zhang L, Zhou G. Cobalt phosphosulfide nanoparticles encapsulated into heteroatom-doped carbon as bifunctional electrocatalyst for Zn-air battery. Adv Powder Mater. 2022;1(3):100027. https://doi.org/10.1016/j.apmate.2021.12.003.

    Article  Google Scholar 

  4. Li S, Lin JD, Chang B, Yang DW, Wu DY, Wang JH, Zhou WJ, Liu H, Sun SH, Zhang L. Implanting single-atom N2-Fe-B2 catalytic sites in carbon hosts to stabilize high-loading and lean-electrolyte lithium-sulfur batteries. Energy Storage Mater. 2023;55:94. https://doi.org/10.1016/j.ensm.2022.11.045.

    Article  Google Scholar 

  5. Sun J, Guo NK, Song TS, Hao YR, Sun JW, Xue H, Wang Q. Revealing the interfacial electron modulation effect of CoFe alloys with CoC encapsulated in N-doped CNTs for superior oxygen reduction. Adv Powder Mater. 2022;1(3):100023. https://doi.org/10.1016/j.apmate.2021.11.009.

    Article  Google Scholar 

  6. Zhu WJ, Chen WX, Yu HH, Zeng Y, Ming FW, Liang HF, Wang ZC. NiCo/NiCo–OH and NiFe/NiFe–OH core shell nanostructures for water splitting electrocatalysis at large currents. Appl Catal B. 2020;278:119326. https://doi.org/10.1016/j.apcatb.2020.119326.

    Article  CAS  Google Scholar 

  7. Yang NW, Chen D, Cui PL, Lu TY, Liu H, Hu CQ, Xu L, Yang J. Heterogeneous nanocomposites consisting of Pt3Co alloy particles and CoP2 nanorods towards high-efficiency methanol electro-oxidation. SmartMat. 2021;2(2):234. https://doi.org/10.1002/smm2.1032.

    Article  CAS  Google Scholar 

  8. Chen HX, Xu H, Song ZR, Liu Y, Cui H, Gao JK. Pressure-induced bimetallic carbon nanotubes from metal-organic frameworks as optimized bifunctional electrocatalysts for water splitting. Rare Met. 2023;42(1):155. https://doi.org/10.1007/s12598-022-02121-y.

    Article  CAS  Google Scholar 

  9. Ye CY, Yu XF, Li WC, He L, Hao GP, Lu AH. Engineering of bifunctional nickel Phosphide@Ni-N-C catalysts for selective electroreduction of CO2-H2O to syngas. Acta Phys Chim Sin. 2022;38(4):2004054. https://doi.org/10.3866/pku.Whxb202004054.

    Article  Google Scholar 

  10. Wang FQ, Zhang WL, Wan HB, Li CX, An WK, Sheng X, Liang XY, Wang XP, Ren YL, Zheng X, Lv DC, Qin YC. Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide reduction. Chin Chem Lett. 2022;33(5):2259. https://doi.org/10.1016/j.cclet.2021.08.074.

    Article  CAS  Google Scholar 

  11. Wu T, Sun MZ, Huang BL. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 2022;41(7):2169. https://doi.org/10.1007/s12598-021-01914-x.

    Article  CAS  Google Scholar 

  12. Xing YP, Zhao G, Qiu SP, Hao SH, Huang JZ, Ma WX, Yang PZ, Wang XK, Xu XJ. Engineering interfacial coupling between 3D net-like Ni3(VO4)2 ultrathin nanosheets and MoS2 on carbon fiber cloth for boosting hydrogen evolution reaction. J Colloid Interface Sci. 2022;611:336. https://doi.org/10.1016/j.jcis.2021.12.100.

    Article  CAS  PubMed  Google Scholar 

  13. Liu HJ, Luan RN, Li LY, Lv RQ, Chai YM, Dong B. Sulphur-dopant induced breaking of the scaling relation on low-valence Ni sites in nickel ferrite nanocones for water oxidation with industrial-level current density. Chem Eng J. 2023;461:141714. https://doi.org/10.1016/j.cej.2023.141714.

    Article  CAS  Google Scholar 

  14. Dong L, Chang GR, Feng Y, Yao XZ, Yu XY. Regulating Ni site in NiV LDH for efficient electrocatalytic production of formate and hydrogen by glycerol electrolysis. Rare Met. 2022;41(5):1583. https://doi.org/10.1007/s12598-021-01881-3.

    Article  CAS  Google Scholar 

  15. Fan RY, Zhou YN, Li MX, Xie JY, Yu WL, Chi JQ, Wang L, Yu JF, Chai YM, Dong B. In situ construction of Fe(Co)OOH through ultra-fast electrochemical activation as real catalytic species for enhanced water oxidation. Chem Eng J. 2021;426:131943. https://doi.org/10.1016/j.cej.2021.131943.

    Article  CAS  Google Scholar 

  16. Cui H, Liao HX, Wang ZL, Xie JP, Tan PF, Chu DW, Jun P. Synergistic electronic interaction between ruthenium and nickel-iron hydroxide for enhanced oxygen evolution reaction. Rare Met. 2022;41(8):2606. https://doi.org/10.1007/s12598-022-02003-3.

    Article  CAS  Google Scholar 

  17. Guo MX, Du JC, Li H, Zhang XJ, Zhang AM, Zhao YK. New research progress on precious metal catalysts for methane combustion. Chin J Rare Met. 2021;45(9):1133. https://doi.org/10.13373/j.cnki.cjrm.XY1911005.

    Article  Google Scholar 

  18. Zhou YN, Yu WL, Cao YN, Zhao J, Dong B, Ma Y, Wang FL, Fan RY, Zhou YL, Chai YM. S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution. Appl Catal B. 2021;292:120150. https://doi.org/10.1016/j.apcatb.2021.120150.

    Article  CAS  Google Scholar 

  19. Ren XZ, Li XH, Peng YJ, Wang GZ, Yin J, Zhao XC, Wang W, Wang XB. FeNiS2/reduced graphene oxide electrocatalysis with reconstruction to generate FeNi oxo/hydroxide as a highly-efficient water oxidation electrocatalyst. Rare Met. 2022;41(12):4127. https://doi.org/10.1007/s12598-022-02104-z.

    Article  CAS  Google Scholar 

  20. Zhou YN, Wang FL, Dou SY, Shi ZN, Dong B, Yu WL, Zhao HY, Wang FG, Yu JF, Chai YM. Motivating high-valence Nb doping by fast molten salt method for NiFe hydroxides toward efficient oxygen evolution reaction. Chem Eng J. 2022;427:131643. https://doi.org/10.1016/j.cej.2021.131643.

    Article  CAS  Google Scholar 

  21. Wei CH, Guo SG, Ma W, Mei SX, Xiang B, Gao B. Recent progress of bismuth-based electrode materials for advanced sodium ion batteries anode. Chin J Rare Met. 2021;45(5):611. https://doi.org/10.13373/j.cnki.cjrm.XY20070021.

    Article  Google Scholar 

  22. Ma YF, Luo S, Wang KK, Wang YQ, Qiu XQ, Liu M, Liu Y, Li WZ, Li J. Lithium-induced amorphization of Ni–Fe layered-double-hydroxide for highly efficient oxygen evolution. Electrochim Acta. 2021;389:138523. https://doi.org/10.1016/j.electacta.2021.138523.

    Article  CAS  Google Scholar 

  23. Wang Y, Wu J, Tang SH, Yang JR, Ye CL, Chen J, Lei YP, Wang DS. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew Chem Int Ed Engl. 2023;62(15):e202219191. https://doi.org/10.1002/anie.202219191.

    Article  CAS  PubMed  Google Scholar 

  24. Wang AQ, Chen J, Zhang PF, Tang S, Feng ZC, Yao TT, Li C. Relation between NiMo(O) phase structures and hydrogen evolution activities of water electrolysis. Acta Phys Chim Sin. 2023;39(4):2301023. https://doi.org/10.3866/pku.Whxb202301023.

    Article  Google Scholar 

  25. Chen L, Wang YP, Zhao X, Wang YC, Li Q, Wang QC, Tang YG, Lei YP. Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting. J Mater Sci Technol. 2022;110:128. https://doi.org/10.1016/j.jmst.2021.08.083.

    Article  CAS  Google Scholar 

  26. Li C, Deng YT, Yang LP, Liu B, Yan D, Fan LY, Li J, Jia LC. An active and stable hydrogen electrode of solid oxide cells with exsolved Fe–Co–Ni nanoparticles from Sr2FeCo0.2Ni0.2Mo0.6O6-δ double-perovskite. Adv Powder Mater. 2023;2(4):100133. https://doi.org/10.1016/j.apmate.2023.100133.

    Article  Google Scholar 

  27. Li ZJ, Wu XD, Jiang X, Shen BB, Teng ZS, Sun DM, Fu GT, Tang YW. Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction. Adv Powder Mater. 2022;1(2):100020. https://doi.org/10.1016/j.apmate.2021.11.007.

    Article  Google Scholar 

  28. Xie JY, Li C, Niu JN, Zhang SH, Ou XM, Feng PZ, Garcia H. Porous NiFe-LDH grown on graphene oxide towards highly efficient OER electrocatalysis. Mater Lett. 2021;290:129517. https://doi.org/10.1016/j.matlet.2021.129517.

    Article  CAS  Google Scholar 

  29. Xia WF, Ji CY, Wang R, Qiu SL, Fang QR. Metal-free tetrathiafulvalene based covalent organic framework for efficient oxygen evolution reaction. Acta Phys Chim Sin. 2023;39(9):2212057. https://doi.org/10.3866/pku.Whxb202212057.

    Article  Google Scholar 

  30. Guo MJ, Song SY, Zhang SS, Yan Y, Zhan K, Yang JH, Zhao B. Fe-Doped Ni–Co phosphide nanoplates with planar defects as an efficient bifunctional electrocatalyst for overall water splitting. ACS Sustain Chem Eng. 2020;8(19):7436. https://doi.org/10.1021/acssuschemeng.0c01467.

    Article  CAS  Google Scholar 

  31. Cao Q, Cheng ZY, Dai JJ, Sun TX, Li GX, Zhao LL, Yu JY, Zhou WJ, Lin JJ. Enhanced hydrogen evolution reaction over co nanoparticles embedded N-doped carbon nanotubes electrocatalyst with Zn as an accelerant. Small. 2022;18(44):2204827. https://doi.org/10.1002/smll.202204827.

    Article  CAS  Google Scholar 

  32. Chen D, Lu RH, Pu ZH, Zhu JW, Li HW, Liu F, Hu S, Luo X, Wu JS, Zhao Y, Mu SC. Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting. Appl Catal B. 2020;279:119396. https://doi.org/10.1016/j.apcatb.2020.119396.

    Article  CAS  Google Scholar 

  33. Yan L, Zhang B, Zhu JL, Li YY, Tsiakaras P, Kang Shen PK. Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting. Appl Catal B. 2020;265:118555. https://doi.org/10.1016/j.apcatb.2019.118555.

    Article  CAS  Google Scholar 

  34. Zhang G, Feng YS, Lu WT, He D, Wang CY, Li YK, Wang XY, Cao FF. Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni3S2 nanosheet arrays. ACS Catal. 2018;8(6):5431. https://doi.org/10.1021/acscatal.8b00413.

    Article  CAS  Google Scholar 

  35. Zhao GY, Wang B, Yan Q, Xia XH. Mo-doping-assisted electrochemical transformation to generate CoFe LDH as the highly efficient electrocatalyst for overall water splitting. J Alloy Compd. 2022;902:163738. https://doi.org/10.1016/j.jallcom.2022.163738.

    Article  CAS  Google Scholar 

  36. Wang XY, Tuo YX, Zhou Y, Wang D, Wang ST, Zhang J. Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation. Chem Eng J. 2021;403:126297. https://doi.org/10.1016/j.cej.2020.126297.

    Article  CAS  Google Scholar 

  37. Chen WH, Zeng JR, Zhang GW, Yu J, Qiu YJ. Electrodeposition of Mo-doped NiFex nanospheres on 3D graphene fibers for efficient overall alkaline water splitting. Int J Hydrog Energy. 2022;47(29):13850. https://doi.org/10.1016/j.ijhydene.2022.02.144.

    Article  CAS  Google Scholar 

  38. Li SJ, Yan RY, Cai MJ, Jiang W, Zhang MY, Li X. Enhanced antibiotic degradation performance of Cd0.5Zn0.5S/Bi2MoO6 S-scheme photocatalyst by carbon dot modification. J Mater Sci Technol. 2023;164:59. https://doi.org/10.1016/j.jmst.2023.05.009.

    Article  CAS  Google Scholar 

  39. Cai MJ, Liu YP, Wang CC, Lin W, Li SJ. Novel Cd0.5Zn0.5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: degradation pathway, mechanism and toxicity assessment. Sep Purif Technol. 2023;304:122401. https://doi.org/10.1016/j.seppur.2022.122401.

    Article  CAS  Google Scholar 

  40. Xu L, Zhang FT, Chen JH, Fu XZ, Sun R, Wong CP. Amorphous NiFe nanotube arrays bifunctional electrocatalysts for efficient electrochemical overall water splitting. ACS Appl Energy Mater. 2018;1(3):1210. https://doi.org/10.1021/acsaem.7b00313.

    Article  CAS  Google Scholar 

  41. Qiao XS, Kang HJ, Li Y, Cui K, Jia X, Liu HH, Qin W, Pupucevski M, Wu G. Porous Fe-doped beta-Ni(OH)2 nanopyramid array electrodes for water splitting. ACS Appl Mater Interfaces. 2020;12(32):36208. https://doi.org/10.1021/acsami.0c10024.

    Article  CAS  PubMed  Google Scholar 

  42. Li SJ, Wang CC, Liu YP, Liu YZ, Cai MJ, Zhao W, Duan XG. S-scheme MIL-101(Fe) octahedrons modified Bi2WO6 microspheres for photocatalytic decontamination of Cr(VI) and tetracycline hydrochloride: synergistic insights, reaction pathways, and toxicity analysis. Chem Eng J. 2023;455(2):140943. https://doi.org/10.1016/j.cej.2022.140943.

    Article  CAS  Google Scholar 

  43. Li SJ, Cai MJ, Liu YP, Wang CC, Lv KL, Chen XB. S-Scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): intermediate eco-toxicity analysis and mechanistic insights. Chin J Catal. 2022;43(10):2652. https://doi.org/10.1016/s1872-2067(22)64106-8.

    Article  CAS  Google Scholar 

  44. Li SJ, Cai MJ, Liu YP, Wang CC, Yan RY, Chen XB. Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. Adv Powder Mater. 2023;2(1):100073. https://doi.org/10.1016/j.apmate.2022.100073.

    Article  Google Scholar 

  45. Li LQ, Gao W, Tang KW, Lei M, Yao B, Qi WH, Wen D. Structure engineering of Ni2P by Mo doping for robust electrocatalytic water and methanol oxidation reactions. Electrochim Acta. 2021;369:137692. https://doi.org/10.1016/j.electacta.2020.137692.

    Article  CAS  Google Scholar 

  46. Rajeshkhanna G, Singh TI, Kim NH, Lee JH. Remarkable bifunctional oxygen and hydrogen evolution electrocatalytic activities with trace-level Fe doping in Ni- and Co-layered double hydroxides for overall water-splitting. ACS Appl Mater Interfaces. 2018;10(49):42453. https://doi.org/10.1021/acsami.8b16425.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 62001189 and 51802177), the Joint Funds of the National Natural Science Foundation of China (No. U22A20140), the Youth Innovation Group Plan of Shandong Province (No. 2022KJ095) and the Plan for the Introduction and Cultivation of Young Innovative Talent in the Colleges and Universities of Shandong Province, Supported by Guiding Fund of Zaozhuang Industrial Technology Research Institute of University of Jinan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Zhao, Xi-Jin Xu or Xiao-Jing Dong.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 10069 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, BJ., Chang, B., Qiu, SP. et al. Two-dimensional bifunctional electrocatalyst (Mo–NiFe-LDH) with multilevel structure for highly efficient overall water splitting. Rare Met. 43, 2613–2622 (2024). https://doi.org/10.1007/s12598-023-02587-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02587-4

Keywords

Navigation