Skip to main content
Log in

Regulation of solvation structure and the cooperation environment of potassium bonds for wider-temperature adaptive potassium storage

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Antimony selenide (Sb2Se3) is one of the perspective candidates for potassium-ion batteries due to its advanced virtues stem including featured high capacity, fertile reserves and the relative narrow band gap. Despite the unique advantages, it is still plagued by the unstable interface compatibility and poor wider-temperature adaptability. The optimization of microstructure and the construction of inorganic-organic hybrids with a low desolvation barrier and rapid kinetics behaviors are efficient to address these issues. The Sb2Se3 nanorods enclosed by the S-doped carbon layer (SC), further crosslinked by the poly(N-isopropylacrylamide) (PM) film (PM@Sb2Se3@SC), were artificially fabricated, and it displays the enrichment ion aggregated model as well as contacted ion pair state, the well-tailored cooperation environment of potassium bonds, assuring a homogeneous potassium deposition and an excellent wider-temperature adaptability. The complicated experimental studies and theoretical calculations authenticate the synergistic effects of geometric conformation and compositional design for the tremendously enhanced potassium storage. Moreover, the full device over PM@Sb2Se3@SC anode and the potassium Prussian blue cathode manifests impressively durable cycling life and wider-temperature adaptability, verifying the glorious contribution from the finely manipulation in solvation structure and potassium bonds to enhancing the potassium storage behaviors.

Graphical Abstract

摘要

Sb2Se3具有理论容量大、储量丰富、能带间隙相对较窄等优点,是钾离子电池(PIBs)的候选材料之一。尽管具有独特的优势,但其仍然存在界面兼容性不稳定、温度适应性差等问题。优化微观结构和构建具有低迁移势垒和快速动力学行为的无机-有机杂化材料是解决这些问题的有效途径。人工合成了硫掺杂的碳层(SC)包覆,再通过聚(N-异丙基丙烯酰胺)薄膜进行交联的Sb2Se3纳米棒(PM@Sb2Se3@SC),它表现出聚集离子对状态(AGG)和接触离子对状态(CIP),以及良好的钾键配位环境,确保了均匀的钾沉积和良好的宽温度适应性。复杂的实验研究和理论计算证实了几何构象和组分设计对极大地提高储钾容量具有协同效应。此外,以PM@Sb2Se3@SC为负极和含钾的普鲁士蓝(KPB)为正极组装为全电池,全电池表现出令人印象深刻的持久循环寿命和更宽的温度适应性,验证了溶剂化结构和对钾键强度的调控对提高钾存储性能的巨大贡献。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cu Q, Shang CQ, Zhou GF, Wang X. Freestanding MoSe2 nanoflowers for superior Li/Na storage properties. Tungsten. 2022. https://doi.org/10.1007/s42864-022-00167-0.

  2. Yuan F, Shao Y-C, Wang B, Wu Y-S, Zhang D, Li Z-J, Wu Y-M-A. Recent progress in application of cobalt-based compounds as anode materials for high-performance potassium-ion batteries. Rare Met. 2022;41(10):3301. https://doi.org/10.1007/s12598-022-02052-8.

    Article  CAS  Google Scholar 

  3. Wang J, Wang B, Lu B. Nature of Novel 2D van der Waals heterostructures for superior potassium ion batteries. Adv Energy Mater. 2020;10(24):2000884. https://doi.org/10.1002/aenm.202000884.

    Article  CAS  Google Scholar 

  4. He R, Bai X, Wei AJ, Zhang LH, Liu P, Liu ZF. Y2O3 modification on nickel-rich LiNi0.8Co0.1Mn0.1O2 with improved electrochemical performance in lithium-ion batteries. J Rare Earth. 2022;40(2):309. https://doi.org/10.1016/j.jre.2020.12.010.

  5. Ma LX, Chen TD, Hai CX, Dong SD, He X, Xu Q, Feng H, Xin A, Chen JT, Zhou Y. Surface engineering of Li- and Mn-rich layered oxides for superior Li-ion battery. Tungsten. 2022. https://doi.org/10.1007/s42864-022-00187-w.

  6. Zhao Z-J, Chao Y-G, Wang F, Dai J-Y, Qin Y-F, Bao X-B, Yang Y, Guo S-J. Intimately coupled WS2 nanosheets in hierarchical hollow carbon nanospheres as the high-performance anode material for lithium-ion storage. Rare Met. 2022;41(4):1245. https://doi.org/10.1007/s12598-021-01850-w.

    Article  CAS  Google Scholar 

  7. Huang H, Wang J, Yang X, Hu R, Liu J, Zhang L, Zhu M. Unveiling the advances of nanostructure design for alloy-type potassium-ion battery anodes via in situ TEM. Angew Chem. 2020;59(34):14504. https://doi.org/10.1002/anie.202004193.

    Article  CAS  Google Scholar 

  8. Guo Y-M, Zhang L-J. research progress in synthesis and electrochemical performance of cobalt sulfide as anode material for secondary batteries. Chin J Rare Met. 2022;46(2):227. https://doi.org/10.13373/j.cnki.cjrm.XY20050006

    Article  Google Scholar 

  9. Zimou J, Nouhen K, Talbi A, Gana L.E., El-Habib A, Hsissou R, Addou M. Influence of manganese rate on structural, optical and electrochemical properties of CeO2 thin films deposited by spray pyrolysis: supercapacitor applications. J Rare Earth. 2022;40(10):1611. https://doi.org/10.1016/j.jre.2021.09.018.

  10. Han K, An F, Wan Q, Xing L, Wang L, Liu Q, Wang W, Liu Y, Li P, Qu X. Confining pyrrhotite Fe7S8 in carbon nanotubes covalently bonded onto 3D few-layer graphene boosts potassium-ion storage and full-cell applications. Small. 2021;17(12):2006719. https://doi.org/10.1002/smll.202006719.

    Article  CAS  Google Scholar 

  11. Lei T, Gu M, Fu H, Wang J, Wang L, Zhou J, Liu H, Lu B. Bond modulation of MoSe2+x driving combined intercalation and conversion reactions for high-performance K cathodes. Chem Sci. 2023;14(10):2528. https://doi.org/10.1039/D2SC07121E.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fu T, Li P-C, He H-C, Ding S-S, Cai Y, Zhang M. Electrospinning with sulfur powder to prepare CNF@G-Fe9S10 nanofibers with controllable particles distribution for stable potassium-ion storage. Rare Met. 2023;42(1):111. https://doi.org/10.1007/s12598-022-02103-0.

    Article  CAS  Google Scholar 

  13. Zhou L, Jiao P, Fang L, Liu L, Hao Z, Wang H, Kang Y-M, Zhang K, Chen J. Two-phase transition induced amorphous metal phosphides enabling rapid, reversible alkali-metal ion storage. ACS Nano. 2021;15(8):13486. https://doi.org/10.1021/acsnano.1c04041.

    Article  CAS  PubMed  Google Scholar 

  14. He H, Huang D, Gan Q, Hao J, Liu S, Wu Z, Pang WK, Johannessen B, Tang Y, Luo J-L, Wang H, Guo Z. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano. 2019;13(10):11843. https://doi.org/10.1021/acsnano.9b05865.

    Article  CAS  PubMed  Google Scholar 

  15. Liu W, Du L, Ju S, Cheng X, Wu Q, Hu Z, Yu X. Encapsulation of red phosphorus in carbon nanocages with ultrahigh content for high-capacity and long cycle life sodium-ion batteries. ACS Nano. 2021;15(3):5679. https://doi.org/10.1021/acsnano.1c00924.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao J, Li C-L, Chen G, Ji F, Shen Y-Y, Peng J, Wang W-H. Rational design of Sn4P3/Ti3C2Tx composite anode with enhanced performance for potassium-ion battery. Rare Met. 2022;41(7):2259. https://doi.org/10.1007/s12598-021-01934-7.

    Article  CAS  Google Scholar 

  17. Zhao L, Wu Z, Wang Z, Bai Z, Sun W, Sun K. Regulating solvation structures enabled by the mesoporous material MCM-41 for rechargeable lithium metal batteries. ACS Nano. 2022;16(12):20891. https://doi.org/10.1021/acsnano.2c08441.

    Article  CAS  PubMed  Google Scholar 

  18. Wu H, Jia H, Wang C, Zhang JG, Xu W. Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv Energy Mater. 2021;11(5):2003092. https://doi.org/10.1002/aenm.202003092.

    Article  CAS  ADS  Google Scholar 

  19. Liu Y, Shi Y, Gao C, Shi Z, Ding H, Feng Y, He Y, Sha J, Zhou J, Lu B. Low-temperature potassium batteries enabled by electric and thermal field regulation. Angew Chem. 2023;62(16):e202300016. https://doi.org/10.1002/anie.202300016.

    Article  CAS  Google Scholar 

  20. Wang F, Liu Y, Wei HJ, Li TF, Xiong XH, Wei SZ, Ren FZ, Volinsky AA. Recent advances and perspective in metal coordination materials-based electrode materials for potassium-ion batteries. Rare Met. 2021;40(2):448. https://doi.org/10.1007/s12598-020-01649-1.

    Article  CAS  Google Scholar 

  21. Gu M, Rao AM, Zhou J, Lu B. In situ formed uniform and elastic SEI for high-performance batteries. Energy Environ Sci. 2023;16(3):1166. https://doi.org/10.1039/D2EE04148K.

    Article  CAS  Google Scholar 

  22. Wan J, Zuo Z, Shen ZZ, Chen WP, Liu GX, Hu XC, Song YX, Xin S, Guo YG, Wen R, Li Y, Wan LJ. Interfacial evolution of the solid electrolyte interphase and lithium deposition in graphdiyne-based lithium-ion batteries. J Am Chem Soc. 2022;144(21):9354. https://doi.org/10.1021/jacs.2c01412.

    Article  CAS  PubMed  Google Scholar 

  23. Fan L, Xie H, Hu Y, Caixiang Z, Rao AM, Zhou J, Lu B. A tailored electrolyte for safe and durable potassium ion batteries. Energy Environ Sci. 2023;16(1):305. https://doi.org/10.1039/D2EE03294E.

    Article  CAS  Google Scholar 

  24. Tian Z, Hou L, Feng D, Jiao Y, Wu P. Modulating the coordination environment of lithium bonds for high performance polymer electrolyte batteries. ACS Nano. 2023;17(4):3786. https://doi.org/10.1021/acsnano.2c11734.

    Article  CAS  PubMed  Google Scholar 

  25. Qiu D, Zhang B, Zhang T, Shen T, Zhao Z, Hou Y. Sulfur-doped carbon for potassium-ion battery anode: insight into the doping and potassium storage mechanism of sulfur. ACS Nano. 2022;16(12):21443. https://doi.org/10.1021/acsnano.2c09845.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang C, Xu Y, Zhou M, Liang L, Dong H, Wu M, Yang Y, Lei Y. Potassium Prussian blue nanoparticles: a low-cost cathode material for potassium-ion batteries. Adv Funct Mater. 2017;27(4):1604307. https://doi.org/10.1002/adfm.201604307.

    Article  CAS  Google Scholar 

  27. Yang L, Hong W, Tian Y, Zou G, Hou H, Sun W, Ji X. Heteroatom-doped carbon inlaid with Sb2X3 (X = S, Se) nanodots for high-performance potassium-ion batteries. Chem Eng J. 2020;385:123838. https://doi.org/10.1016/j.cej.2019.123838.

    Article  CAS  Google Scholar 

  28. Li Q, Zhang W, Peng J, Yu D, Liang Z, Zhang W, Wu J, Wang G, Li H, Huang S. Nanodot-in-nanofiber structured carbon-confined sb2se3 crystallites for fast and durable sodium storage. Adv Funct Mater. 2022;32(18):2112776. https://doi.org/10.1002/adfm.202112776.

    Article  CAS  Google Scholar 

  29. Zhao X, Tang Y, Ni C, Wang J, Star A, Xu Y. Free-standing nitrogen-doped cup-stacked carbon nanotube mats for potassium-ion battery anodes. ACS Appl Energy Mater. 2018;1(4):1703. https://doi.org/10.1021/acsaem.8b00182.

    Article  CAS  Google Scholar 

  30. An Y, Tian Y, Ci L, Xiong S, Feng J, Qian Y. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano. 2018;12(12):12932. https://doi.org/10.1021/acsnano.8b08740.

    Article  CAS  PubMed  Google Scholar 

  31. Pan Q, Zhang Q, Zheng F, Liu Y, Li Y, Ou X, Xiong X, Yang C, Liu M. Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries. ACS Nano. 2018;12(12):12578. https://doi.org/10.1021/acsnano.8b07172.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao Y, Cong Y, Ning H, Li Y, Yang H, Jiao Z, Song D, Li Y, Zhao Q, Wu M. Petroleum-pitch-based carbon nanocages encapsulated few-layer MoS2 with S vacancies for a high-performance sodium-ion battery. Energy Fuels. 2023;37(6):4641. https://doi.org/10.1021/acs.energyfuels.2c04104.

    Article  CAS  Google Scholar 

  33. Huang X, Yang C, You Y. Polycrystalline Prussian white aggregates as a high-rate and long-life cathode for high-temperature sodium-ion batteries. ACS Appl Energy Mater. 2022;5(7):8123. https://doi.org/10.1021/acsaem.2c00646.

    Article  CAS  Google Scholar 

  34. Zhao S, He Y, Wang Z, Bo X, Hao S, Yuan Y, Jin H, Wang S, Lin Z. Advancing performance and unfolding mechanism of lithium and sodium storage in SnO2 via precision synthesis of monodisperse PEG-ligated nanoparticles. Adv Energy Mater. 2022;12(26):2201015. https://doi.org/10.1002/aenm.202201015.

    Article  CAS  Google Scholar 

  35. Wei Q, Chang X, Butts D, DeBlock R, Lan K, Li J, Chao D, Peng D-L, Dunn B. Surface-redox sodium-ion storage in anatase titanium oxide. Nat Commun. 2023;14(1):7. https://doi.org/10.1038/s41467-022-35617-3.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Xing L, Han K, Liu Q, Liu Z, Chu J, Zhang L, Ma X, Bao Y, Li P, Wang W. Hierarchical two-atom-layered WSe2/C ultrathin crumpled nanosheets assemblies: engineering the interlayer spacing boosts potassium-ion storage. Energy Stor Mater. 2021;36:309. https://doi.org/10.1016/j.ensm.2021.01.005.

    Article  Google Scholar 

  37. Qin M, Zeng Z, Wu Q, Yan H, Liu M, Wu Y, Zhang H, Lei S, Cheng S, Xie J. Dipole–dipole interactions for inhibiting solvent co-intercalation into a graphite anode to extend the horizon of electrolyte design. Energy Environ Sci. 2023;16(2):546. https://doi.org/10.1039/D2EE03626F.

    Article  CAS  Google Scholar 

  38. Zhang CY, Zhang C, Pan JL, Sun GW, Shi Z, Li C, Chang X, Sun GZ, Zhou JY, Cabot A. Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries. eScience. 2022;2(4):405. https://doi.org/10.1016/j.esci.2022.07.001.

    Article  Google Scholar 

  39. Cai M, Zhang H, Zhang Y, Xiao B, Wang L, Li M, Wu Y, Sa B, Liao H, Zhang L, Chen S, Peng DL, Wang MS, Zhang Q. Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere. Sci Bull. 2022;67(9):933. https://doi.org/10.1016/j.scib.2022.02.007.

    Article  CAS  Google Scholar 

  40. Xiao B, Zhang H, Sun Z, Li M, Fan Y, Lin H, Liu H, Jiang B, Shen Y, Wang MS, Li M, Zhang Q. Achieving high-capacity and long-life K+ storage enabled by constructing yolk-shell Sb2S3@N, S-doped carbon nanorod anodes. J Energy Chem. 2023;76:547. https://doi.org/10.1016/j.jechem.2022.09.050.

    Article  CAS  Google Scholar 

  41. Zhang Z, Duan L, Xu Y, Zhao C, Bao J, Shen J, Zhou X. Synthesis of multicore-shell FeS2@C nanocapsules for stable potassium-ion batteries. J Energy Chem. 2022;73:126. https://doi.org/10.1016/j.jechem.2022.04.039.

    Article  CAS  Google Scholar 

  42. Yao N, Sun SY, Chen X, Zhang XQ, Shen X, Fu ZH, Zhang R, Zhang Q. The anionic chemistry in regulating the reductive stability of electrolytes for lithium metal batteries. Angew Chem. 2022;61(52):e202210859. https://doi.org/10.1002/anie.202210859.

    Article  CAS  Google Scholar 

  43. Liang JY, Zhang Y, Xin S, Tan SJ, Meng XH, Wang WP, Shi JL, Wang ZB, Wang F, Wan LJ, Guo YG. Mitigating swelling of the solid electrolyte interphase using an inorganic anion switch for low-temperature lithium-ion batteries. Angew Chem. 2023;135(14):e202300384. https://doi.org/10.1002/anie.202300384.

    Article  CAS  Google Scholar 

  44. Li J, Zhuang N, Xie J, Li X, Zhuo W, Wang H, Na JB, Li X, Yamauchi Y, Mai W. K-ion storage enhancement in Sb2O3/reduced graphene oxide using ether-based electrolyte. Adv Energy Mater. 2020;10(5):1903455. https://doi.org/10.1002/aenm.201903455.

    Article  CAS  Google Scholar 

  45. Sheng B, Wang L, Huang H, Yang H, Xu R, Wu X, Yu Y. Boosting potassium storage by integration advantageous of defect engineering and spatial confinement: a case study of Sb2Se3. Small. 2020;16(49):2005272. https://doi.org/10.1002/smll.202005272.

    Article  CAS  Google Scholar 

  46. Piao N, Liu S, Zhang B, Ji X, Fan X, Wang L, Wang PF, Jin T, Liou SC, Yang H, Jiang J, Xu K, Schroeder MA, He X, Wang C. Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 2021;6(5):1839. https://doi.org/10.1021/acsenergylett.1c00365.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 22175103) and Young Taishan Scholar project of Shandong province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hui Qin.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1800 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, BB., Liu, YH., Zhang, YB. et al. Regulation of solvation structure and the cooperation environment of potassium bonds for wider-temperature adaptive potassium storage. Rare Met. 43, 1610–1621 (2024). https://doi.org/10.1007/s12598-023-02524-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02524-5

Keywords

Navigation