Skip to main content
Log in

Flexible and multifunctional triboelectric nanogenerator based on liquid metal/polyvinyl alcohol hydrogel for energy harvesting and self-powered wearable human–machine interaction

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Hydrogel-based triboelectric nanogenerator (TENG) has a promising applied prospect in wearable electronic devices. However, its low performance, poor stability, insufficient recyclability and inferior self-healing seriously hinder its development. Herein, we report a robust route to a liquid metal (LM)/polyvinyl alcohol (PVA) hydrogel-based TENG (LP-TENG). Owing to the intrinsically liquid feature of conductive LM within the flexible PVA hydrogel, the as-prepared LP-TENG exhibited comprehensive advantages of adaptability, biocompatibility, outstanding electrical performance, superior stability, recyclability and diverse applications, which were unattainable by traditional systems. Concretely, the LP-TENG delivered appealing open circuit voltage of 250 V, short circuit current of 4 μA and transferred charge of 120 nC with high stability, outperforming most advanced TENG systems. The LP-TENG was successfully employed for versatile applications with multifunctionality, including human motion detection, handwriting recognition, energy collection, message transmission and human–machine interaction. This work presents significant prospects for crafting advanced materials and devices in the fields of wearable electronics, flexible skin and smart robots.

Graphical abstract

摘要

基于水凝胶的TENG在可穿戴电子设备中具有很好的应用前景。然而,其性能低、稳定性差、可回收性不足、自愈性差,严重阻碍了其发展。在此,我们报道了一种基于液态金属(LM)/聚乙烯醇(PVA)水凝胶的TENG(LP-TENG)。由于导电LM在柔性PVA水凝胶中具有固有的液体特性,所以制备的LP-TENG具有传统系统无法实现的适应性、生物相容性、电气性、稳定性、可回收性和多样化应用等综合优势。具体而言,LP-TENG提供了250 V的开路电压、4 μA的短路电流和120 nC的转移电荷以及高稳定性,优于大多数先进的TENG系统。LP-TENG成功应用于多功能的多用途应用,包括人体运动检测、手写识别、能量收集、信息传输和人机交互。这项工作为在可穿戴电子、柔性皮肤和智能机器人领域制造先进材料和设备提供了重要的前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akram W, Chen Q, Xia G, Fang J. A review of single electrode triboelectric nanogenerators. Nano Energy. 2023;106:108043. https://doi.org/10.1016/j.nanoen.2022.108043.

    Article  CAS  Google Scholar 

  2. Liu S, Tong W, Gao C, Liu Y, Li X, Zhang Y. Environmentally friendly natural materials for triboelectric nanogenerators: a review. J Mater Chem A. 2023;11(17):9270. https://doi.org/10.1039/D2TA10024J.

    Article  CAS  Google Scholar 

  3. Zhang H, Zhang DZ, Wang DY, Xu ZY, Yang Y, Zhang B. Flexible single-electrode triboelectric nanogenerator with MWCNT/PDMS composite film for environmental energy harvesting and human motion monitoring. Rare Met. 2022;41(9):3117. https://doi.org/10.1007/s12598-022-02031-z.

    Article  CAS  Google Scholar 

  4. Liu Y, Hu C. Triboelectric nanogenerators based on elastic electrodes. Nanoscale. 2020;12(39):20118. https://doi.org/10.1039/D0NR04868B.

    Article  CAS  PubMed  Google Scholar 

  5. Bagchi B, Datta P, Fernandez CS, Gupta P, Jaufuraully S, David AL, Siassakos D, Desjardins A, Tiwari MK. Flexible triboelectric nanogenerators using transparent copper nanowire electrodes: energy harvesting, sensing human activities and material recognition. Mater Horiz. 2023;10:3124. https://doi.org/10.1039/D3MH00404J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang C, Zhang L, He B, Zhou Q, Zhang SH, Kong XL, Chen Z, Pan GB. Three-dimensional CeO2@carbon-quantum-dots scaffold modified with Au nanoparticles on flexible substrates for high performance gas sensing at room temperature. Rare Met. 2023;42(6):1946. https://doi.org/10.1007/s12598-023-02283-3.

    Article  CAS  Google Scholar 

  7. Pu X, Guo H, Chen J, Wang X, Xi Y, Hu C, Wang ZL. Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci Adv. 2017;3(7):e1700694. https://doi.org/10.1126/sciadv.1700694.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Song Y, Shi Z, Hu GH, Xiong C, Isogai A, Yang Q. Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: a review. J Mater Chem A. 2021;9(4):1910. https://doi.org/10.1039/D0TA08642H.

    Article  CAS  Google Scholar 

  9. Zhang H, Zhang D, Wang Z, Xi G, Mao R, Ma Y, Wang D, Tang M, Xu Z, Luan H. Ultrastretchable, self-healing conductive hydrogel-based triboelectric nanogenerators for human-computer interaction. ACS Appl Mater Interfaces. 2023;15(4):5128. https://doi.org/10.1021/acsami.2c17904.

    Article  CAS  PubMed  Google Scholar 

  10. Qian SB, Liu G, Yan M, Wu C. Lightweight, self-cleaning and refractory FeCo@MoS2 PVA aerogels: from electromagnetic wave-assisted synthesis to flexible electromagnetic wave absorption. Rare Met. 2022;42(4):1294. https://doi.org/10.1007/s12598-022-02191-y.

    Article  CAS  Google Scholar 

  11. Xu Y, Yiu PM, Wang YK, Qin XM, Shibayama T, Watanabe S, Ohnuma M, Chen DZ, Cheng H, Shek CH, Lu ZG, Liu C. Highly flexible, mechanically strengthened metallic glass-based composite electrode with enhanced capacitance and cyclic stability. Rare Met. 2022;41(11):3717. https://doi.org/10.1007/s12598-022-02060-8.

    Article  CAS  Google Scholar 

  12. Zhang X, Pan S, Song H, Guo W, Gu F, Yan C, Jin H, Zhang L, Chen Y, Wang S. Photothermal effect enables markedly enhanced oxygen reduction and evolution activities for high-performance Zn–air batteries. J Mater Chem A. 2021;9(35):19734. https://doi.org/10.1039/d1ta03652a.

    Article  CAS  Google Scholar 

  13. Liu W, Wang X, Song Y, Cao R, Wang L, Yan Z, Shan G. Self-powered forest fire alarm system based on impedance matching effect between triboelectric nanogenerator and thermosensitive sensor. Nano Energy. 2020;73:104843. https://doi.org/10.1016/j.nanoen.2020.104843.

    Article  CAS  Google Scholar 

  14. Liu W, Wang Z, Wang G, Zeng Q, He W, Liu L, Wang X, Xi Y, Guo H, Hu C, Wang ZL. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nat Commun. 2020;11(1):1883. https://doi.org/10.1038/s41467-020-15373-y.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Benyoussef M, Zaari H, Belhadi J, Amraoui YE, Ez-Zahraouy H, Lahmar A, Marssi ME. Effect of rare earth on physical properties of Na0.5Bi0.5TiO3 system: a density functional theory investigation. J Rare Earths. 2022;40(3):473. https://doi.org/10.1016/j.jre.2020.12.002.

    Article  CAS  Google Scholar 

  16. Wang J, Wu C, Dai Y, Zhao Z, Wang A, Zhang T, Wang ZL. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat Commun. 2017;8(1):88. https://doi.org/10.1038/s41467-017-00131-4.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Wang ZL. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano. 2013;7(11):9533. https://doi.org/10.1021/nn404614z.

    Article  CAS  PubMed  Google Scholar 

  18. Lai YC, Wu HM, Lin HC, Chang CL, Chou HH, Hsiao YC, Wu YC. Triboelectric nanogenerators: entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv Funct Mater. 2019;29(40):1970273. https://doi.org/10.1002/adfm.201970273.

    Article  CAS  Google Scholar 

  19. Lai YC, Deng J, Niu S, Peng W, Wu C, Liu R, Wen Z, Wang ZL. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv Mater. 2016;28(45):10024. https://doi.org/10.1002/adma.201603527.

    Article  CAS  PubMed  Google Scholar 

  20. Li Z, Shen J, Abdalla I, Yu J, Ding B. Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy. 2017;36:341. https://doi.org/10.1016/j.nanoen.2017.04.035.

    Article  CAS  Google Scholar 

  21. Wang X, Wen Z, Guo H, Wu C, He X, Lin L, Cao X, Wang ZL. Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano. 2016;10(12):11369. https://doi.org/10.1021/acsnano.6b06622.

    Article  CAS  PubMed  Google Scholar 

  22. Liu T, Liu M, Dou S, Sun J, Cong Z, Jiang C, Du C, Pu X, Hu W, Wang ZL. Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano. 2018;12(3):2818. https://doi.org/10.1021/acsnano.8b00108.

    Article  CAS  PubMed  Google Scholar 

  23. Yazdan A, Wang JZ, Hu BK, Xie WS, Zhao LY, Nan CW, Li LL. Boron nitride/agarose hydrogel composites with high thermal conductivities. Rare Met. 2019;39(4):375. https://doi.org/10.1007/s12598-019-01322-2.

    Article  CAS  Google Scholar 

  24. Wang L, Liu W, Yan Z, Wang F, Wang X. Stretchable and shape-adaptable triboelectric nanogenerator based on biocompatible liquid electrolyte for biomechanical energy harvesting and wearable human–machine interaction. Adv Func Mater. 2021;31(7):2007221. https://doi.org/10.1002/adfm.202007221.

    Article  CAS  Google Scholar 

  25. Liu AP, Chen ZX, Wang ZH. Surface enhanced Raman study of 2D Mxenes-Ag micro nano composite Films. Chin J Rare Met. 2022;46(8):989. https://doi.org/10.13373/j.cnki.cjrm.XY22060028.

    Article  Google Scholar 

  26. Li QL, Cao JX, Zhang Q. Study on the regulatory mechanism of reducing graphene oxide content on the electrochemical performance of MXene/reduced graphene oxide based supercapacitors. Chin J Rare Met. 2022;46(9):1133. https://doi.org/10.13373/j.cnki.cjrm.XY21040042.

    Article  Google Scholar 

  27. Khan A, Nilam B, Rukhsar C, Sayali G, Mandlekar B, Kadam A. A review article based on composite graphene @tungsten oxide thin films for various applications. Tungsten. 2022;5(4):391. https://doi.org/10.1007/s42864-022-00158-1.

    Article  Google Scholar 

  28. Cheon S, Kang H, Kim H, Son Y, Lee JY, Shin HJ, Kim SW, Cho JH. High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride-silver nanowire composite nanofibers. Adv Func Mater. 2017;28(2):1703778. https://doi.org/10.1002/adfm.201703778.

    Article  CAS  Google Scholar 

  29. Zhang J, Xu Q, Li H, Zhang S, Hong A, Jiang Y, Hu N, Chen G, Fu H, Yuan M, Dai B, Chu L, Yang D, Xie Y. Self-powered electrodeposition system for sub-10-nm silver nanoparticles with high-efficiency antibacterial activity. J Phys Chem Letters. 2022;13(29):6721. https://doi.org/10.1021/acs.jpclett.2c01737.

    Article  CAS  Google Scholar 

  30. Fan YJ, Meng XS, Li HY, Kuang SY, Zhang L, Wu Y, Wang ZL, Zhu G. Stretchable porous carbon nanotube-elastomer hybrid nanocomposite for harvesting mechanical energy. Adv Mater. 2016;29(2):1603115. https://doi.org/10.1002/adma.201603115.

    Article  CAS  Google Scholar 

  31. Li S, Wang J, Peng W, Lin L, Zi Y, Wang S, Zhang G, Wang ZL. Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators. Adv Energy Mater. 2017;7(13):1602832. https://doi.org/10.1002/aenm.201602832.

    Article  CAS  Google Scholar 

  32. Lee KH, Zhang YZ, Jiang Q, Kim H, Alkenawi AA, Alshareef HN. Ultrasound-driven two-dimensional Ti3C2Tx MXene hydrogel generator. ACS Nano. 2020;14(3):3199. https://doi.org/10.1021/acsnano.9b08462.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Y, Wan C, Yang Y, Yang H, Wang S, Dai Z, Ji K, Jiang H, Chen X, Long Y. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv Func Mater. 2019;29(1):1806220. https://doi.org/10.1002/adfm.201806220.

    Article  CAS  Google Scholar 

  34. Ding Y, Zeng M, Fu L. Surface chemistry of gallium-based liquid metals. Matter. 2020;3(5):1477. https://doi.org/10.1016/j.matt.2020.08.012.

    Article  Google Scholar 

  35. Zheng K, Gu F, Wei H, Zhang L, Chen X, Jin H, Pan S, Chen Y, Wang S. Flexible, permeable, and recyclable liquid-metal-based transient circuit enables contact/noncontact sensing for wearable human-machine interaction. Small Methods. 2023;7(4):e2201534. https://doi.org/10.1002/smtd.202201534.

    Article  CAS  PubMed  Google Scholar 

  36. Luo X, Zhu L, Wang YC, Li J, Nie J, Wang ZL. A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv Func Mater. 2021;31(38):2104928. https://doi.org/10.1002/adfm.202104928.

    Article  CAS  Google Scholar 

  37. Liao M, Liao H, Ye J, Wan P, Zhang L. Polyvinyl alcohol-stabilized liquid metal hydrogel for wearable transient epidermal sensors. ACS Appl Mater Interfaces. 2019;11(50):47358. https://doi.org/10.1021/acsami.9b16675.

    Article  CAS  PubMed  Google Scholar 

  38. Cui WJ, Zhang SM, Tian ZY, Chen ZY, Wang YM, Yu BB, Han ZG. Hydrogen bond-mediated polyoxometalate-based metal-organic networks for efficient and selective oxidation of aryl alkenes to aldehydes. Tungsten. 2022;4(2):109. https://doi.org/10.1007/s42864-021-00130-5.

    Article  Google Scholar 

  39. Huang LB, Dai X, Sun Z, Wong MC, Pang SY, Han J, Zheng Q, Zhao C-H, Kong J, Hao J. Environment-resisted flexible high performance triboelectric nanogenerators based on ultrafast self-healing non-drying conductive organohydrogel. Nano Energy. 2021;82:105724. https://doi.org/10.1016/j.nanoen.2020.105724.

    Article  CAS  Google Scholar 

  40. Yu Z, Zhu Z, Wang Y, Wang J, Zhao Y, Zhang J, Qin Y, Jiang Q, He H. Wearable cotton fabric-based single-electrode-mode triboelectric nanogenerator for self-powered human motion monitoring. Cellulose. 2023;30(8):5355. https://doi.org/10.1007/s10570-023-05194-9.

    Article  CAS  Google Scholar 

  41. Lu Y, Xiang H, Jie Y, Cao X, Wang ZL. Antibacterial triboelectric nanogenerator for mite removal and intelligent human monitoring. Adv Mater Technol. 2023;23:2300192. https://doi.org/10.1002/admt.202300192.

    Article  CAS  Google Scholar 

  42. Chan EWC, Sun X, Travas-Sejdic J. Recent progress and future prospects in transient polymer electronics. Macromolecules. 2023;56(11):3755. https://doi.org/10.1021/acs.macromol.3c00254.

    Article  CAS  ADS  Google Scholar 

  43. Yu X, Shou W, Mahajan BK, Huang X, Pan H. Materials, processes, and facile manufacturing for bioresorbable electronics: a review. Adv Mater. 2018;30(28):1707624. https://doi.org/10.1002/adma.201707624.

    Article  CAS  Google Scholar 

  44. Yoon J, Han J, Choi B, Lee Y, Kim Y, Park J, Lim M, Kang MH, Kim DH, Kim DM, Kim S, Choi SJ. Three-dimensional printed poly(vinyl alcohol) substrate with controlled on-demand degradation for transient electronics. ACS Nano. 2018;12(6):6006. https://doi.org/10.1021/acsnano.8b02244.

    Article  CAS  PubMed  Google Scholar 

  45. Li F, Qin Q, Zhou Y, Wu Y, Xue W, Gao S, Shang J, Liu Y, Li RW. Recyclable liquid metal-based circuit on paper. Adv Mater Technol. 2018;3(8):1800131. https://doi.org/10.1002/admt.201800131.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Natural Science Foundation of China (Nos. 22109120, 62104170 and 82202757) and Zhejiang Provincial Natural Science Foundation of China (Nos. LQ21B030002 and LY23F040001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang Pan, Min-Yi Xu, Yi-Huang Chen or Hai-Ming Jin.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, HW., Zhao, C., Zhao, ZY. et al. Flexible and multifunctional triboelectric nanogenerator based on liquid metal/polyvinyl alcohol hydrogel for energy harvesting and self-powered wearable human–machine interaction. Rare Met. 43, 1186–1196 (2024). https://doi.org/10.1007/s12598-023-02518-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02518-3

Keywords

Navigation