Skip to main content
Log in

Boron nitride/agarose hydrogel composites with high thermal conductivities

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Hydrogels are cross-linked polymers suitable for various applications, but the thermal conductivities of hydrogel-based composites have not been thoroughly investigated. In this study, agarose hydrogel-based composites with various boron nitride (BN) fillers were synthesized and their thermal conductivities were systematically investigated. With the increase in the agarose content from 1.5 wt% to 3.0 wt%, the thermal conductivity of the composite decreased. The composites with BN micropowder had larger thermal conductivities than those of the composites with BN nanopowder at the same filler loading, as the BN micropowder provided better thermal conduction pathways in the hydrogel matrix than those provided by the nanopowder. The maximum thermal conductivity of 2.69 W·m−1·K−1 was achieved when 15 wt% microscale BN fillers were added into 1.5 wt% agarose hydrogel, which was 3.5 times larger than that of the pure agarose hydrogel. Additionally, a theoretical model was used to calculate the thermal conductivities of the BN/agarose hydrogel composites; a good agreement was achieved between the experimental and fitting ones. This study demonstrated that the thermal conductivities of hydrogel-based materials can be efficiently and significantly enhanced using BN fillers.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P. Interfacial heat flow in carbon nanotube suspensions. Nat Mater. 2003;2(11):731.

    CAS  Google Scholar 

  2. Yang X, Liang C, Ma T, Guo Y, Kong J, Gu J, Chen M, Zhu J. A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater. 2018;1(2):207.

    Google Scholar 

  3. Qureshi ZA, Ali HM, Khushnood S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int J Heat Mass Transfer. 2018;127(C):838.

    CAS  Google Scholar 

  4. McNamara AJ, Joshi Y, Zhang ZM. Characterization of nanostructured thermal interface materials—a review. Int J Therm Sci. 2012;62:2.

    CAS  Google Scholar 

  5. Zhao R, Zhang S, Liu J, Gu J. A review of thermal performance improving methods of lithium ion battery: electrode modification and thermal management system. J Power Sources. 2015;299:557.

    CAS  Google Scholar 

  6. Prasher R. Thermal interface materials: historical perspective, status, and future directions. Proc IEEE. 2006;94(8):1571.

    CAS  Google Scholar 

  7. Zhang R, Cai J, Wang Q, Li J, Hu Y, Du H, Li L. Thermal resistance analysis of Sn-Bi solder paste used as thermal interface material for power electronics applications. J Electron Packag. 2014;136(1):011012.

    Google Scholar 

  8. Guo Y, Xu G, Yang X, Ruan K, Ma T, Zhang Q, Gu J, Wu Y, Liu H, Guo Z. Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene: via in situ polymerization and electrospinning-hot press technology. J Mater Chem C. 2018;6(12):3004.

    CAS  Google Scholar 

  9. Hwang SH, Shahsavari R. Intrinsic size effect in scaffolded porous calcium silicate particles and mechanical behavior of their self-assembled ensembles. ACS Appl Mater Interfaces. 2017;10(1):890.

    Google Scholar 

  10. Hansson J, Nilsson TMJ, Ye L, Liu J. Novel nanostructured thermal interface materials: a review. Int Mater Rev. 2018;63(1):22.

    CAS  Google Scholar 

  11. Yang F, Zhao X, Xiao P. Thermal conductivities of YSZ/Al2O3 composites. J Eur Ceram Soc. 2010;30(15):3111.

    Google Scholar 

  12. Guo B, Lin Q, Zhao X, Zhou X. Crystallization of polyphenylene sulfide reinforced with aluminum nitride composite: effects on thermal and mechanical properties of the composite. Iran Polym J. 2015;24(11):965.

    Google Scholar 

  13. Kim KJ, Cho TY, Kim YW, Nishimura T, Narimatsu E. Electrical and thermal properties of silicon carbide-boron nitride composites prepared without sintering additives. J Eur Ceram Soc. 2015;35(16):4423.

    CAS  Google Scholar 

  14. Gu J, Xu S, Zhuang Q, Tang Y, Kong J. Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity. IEEE Trans Dielectr Electr Insul. 2017;24(2):784.

    CAS  Google Scholar 

  15. Jeong US, Lee YJ, Shin DG, Lim HM, Mun SY, Kwon WT, Kim SR, Kim YH, Shim KB. Highly thermal conductive alumina plate/epoxy composite for electronic packaging. Trans Electr Electron Mater. 2015;16(6):351.

    Google Scholar 

  16. Yang H, Gao Q, Xie Y, Chen Q, Ouyang C, Xu Y, Ji X. Effect of SiO2 and TiO2 nanoparticle on the properties of phenyl silicone rubber. J Appl Polym Sci. 2015;132(46):42806.

    Google Scholar 

  17. Wertz JT, Kuczynski JP, Boday DJ. Thermally conductive-silicone composites with thermally reversible cross-links. ACS Appl Mater Interfaces. 2016;8(22):13669.

    CAS  Google Scholar 

  18. Kamthai S, Magaraphan R. Thermal and mechanical properties of polylactic acid (PLA) and bagasse carboxymethyl cellulose (CMCB) composite by adding isosorbide diesters. AIP Conf Proc. 2015;1664(1):060006.

    Google Scholar 

  19. Zhou T, Wang X, Cheng P, Wang T, Xiong D, Wang X. Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles. Express Polym Lett. 2013;7(7):585.

    CAS  Google Scholar 

  20. Pakdel A, Zhi C, Bando Y, Nakayama T, Golberg D. Boron nitride nanosheet coatings with controllable water repellency. ACS Nano. 2011;5(8):6507.

    CAS  Google Scholar 

  21. Gao C, Feng C, Lu H, Ni H, Chen J. Thermally conductive general-purpose polystyrene (GPPS)/graphite composite with a segregated structure: effect of size of resin and graphite flakes. Polym Plast Technol Eng. 2018;57(13):1277.

    CAS  Google Scholar 

  22. Sun H, Chen D, Wu Y, Yuan Q, Guo L, Dai D, Xu Y, Zhao P, Jiang N, Lin CT. High quality graphene films with a clean surface prepared by an UV/ozone assisted transfer process. J Mater Chem C. 2017;5(8):1880.

    CAS  Google Scholar 

  23. Ji T, Zhang LQ, Wang WC, Liu Y, Zhang XF, Lu YL. Cold plasma modification of boron nitride fillers and its effect on the thermal conductivity of silicone rubber/boron nitride composites. Polym Compos. 2012;33(9):1473.

    CAS  Google Scholar 

  24. Tang C, Bando Y, Liu C, Fan S, Zhang J, Ding X, Golberg D. Thermal conductivity of nanostructured boron nitride materials. J Phys Chem B. 2006;110(21):10354.

    CAS  Google Scholar 

  25. Yang X, Guo Y, Luo X, Zheng N, Ma T, Tan J, Li C, Zhang Q, Gu J. Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in situ polymerization. Compos Sci Technol. 2018;164:59.

    CAS  Google Scholar 

  26. Gu J, Lv Z, Wu Y, Guo Y, Tian L, Qiu H, Li W, Zhang Q. Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in situ polymertization-electrospining-hot press method. Compos Part A Appl Sci Manuf. 2017;94:209.

    CAS  Google Scholar 

  27. Nojoomi A, Arslan H, Lee K, Yum K. Bioinspired 3D structures with programmable morphologies and motions. Nat Commun. 2018;9(1):3705.

    Google Scholar 

  28. Griffin DR, Weaver WM, Scumpia PO, Carlo DD, Segura T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat Mater. 2015;14(7):737.

    CAS  Google Scholar 

  29. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1(12):16071.

    CAS  Google Scholar 

  30. Fern J, Schulman R. Modular DNA strand-displacement controllers for directing material expansion. Nat Commun. 2018;9(1):3766.

    Google Scholar 

  31. Stoddart A. Hydrogels: a less than swell time. Nat Rev Mater. 2017;2(4):17018.

    Google Scholar 

  32. Jiang H, Wang Z, Geng H, Song X, Zeng H, Zhi C. Highly flexible and self-healable thermal interface material based on boron nitride nanosheets and a dual cross-linked hydrogel. ACS Appl Mater Interfaces. 2017;9(11):10078.

    CAS  Google Scholar 

  33. Burnett K, Edsinger E, Albrecht DR. Rapid and gentle hydrogel encapsulation of living organisms enables long-term microscopy over multiple hours. Commun Biol. 2018;1(1):73.

    Google Scholar 

  34. Zarrintaj P, Bakhshandeh B, Rezaeian I, Heshmatian B, Ganjali MR. A novel electroactive agarose-aniline pentamer platform as a potential candidate for neural tissue engineering. Sci Rep. 2017;7(1):17187.

    Google Scholar 

  35. Lee PY, Costumbrado J, Hsu CY, Kim YH. Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp. 2012;62:e3923.

    Google Scholar 

  36. Geick R, Perry CH, Rupprecht G. Normal modes in hexagonal boron nitride. Phys Rev. 1966;146(2):543.

    CAS  Google Scholar 

  37. Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010;10(8):3209.

    CAS  Google Scholar 

  38. Kuzuba T, Sato Y, Yamaoka S, Era K. Raman-scattering study of high-pressure effects on the anisotropy of force constants of hexagonal boron nitride. Phys Rev B. 1978;18(8):4440.

    CAS  Google Scholar 

  39. Hrozek J, Nespor D, Bartusek K. Thermal conductivity and heat capacity measurement of biological tissues. In: Proceedings of the 34th Progress in Electromagnetics Research Symposium. Stockholm; 2013. 1681.

  40. Zhang M, Che Z, Chen J, Zhao H, Yang L, Zhong Z, Lu J. Experimental determination of thermal conductivity of water-agar gel at different concentrations and temperatures. J Chem Eng Data. 2011;56(4):859.

    CAS  Google Scholar 

  41. Zhou W, Qi S, An Q, Zhao H, Liu N. Thermal conductivity of boron nitride reinforced polyethylene composites. Mater Res Bull. 2007;42(10):1863.

    CAS  Google Scholar 

  42. Zhang S, Cao XY, Ma YM, Ke YC, Zhang JK, Wang FS. The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Express Polym Lett. 2011;5(7):581.

    CAS  Google Scholar 

  43. Zeng X, Xiong Y, Fu Q, Sun R, Xu J, Xu D, Wong CP. Structure-induced variation of thermal conductivity in epoxy resin fibers. Nanoscale. 2017;9(30):10585.

    CAS  Google Scholar 

  44. Yu J, Huang X, Wu C, Wu X, Wang G, Jiang P. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer. 2012;53(2):471.

    CAS  Google Scholar 

  45. Tessema A, Zhao D, Moll J, Xu S, Yang R, Li C, Kumar SK, Kidane A. Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites. Polym Test. 2017;57:101.

    CAS  Google Scholar 

  46. Fang H, Zhang X, Zhao Y, Bai SL. Dense graphene foam and hexagonal boron nitride filled PDMS composites with high thermal conductivity and breakdown strength. Compos Sci Technol. 2017;152:243.

    CAS  Google Scholar 

  47. Nielsen LE. The thermal and electrical conductivity of two-phase systems. Ind Eng Chem Fundam. 1974;13(1):17.

    CAS  Google Scholar 

  48. Wong CP, Bollampally RS. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci. 1999;74(14):3396.

    CAS  Google Scholar 

  49. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1(3):187.

    CAS  Google Scholar 

  50. Li Y, Xu G, Guo Y, Ma T, Zhong X, Zhang Q, Gu J. Fabrication, proposed model and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers. Compos Part A. 2018;107:570.

    CAS  Google Scholar 

  51. Fricke H. A mathematical treatment of the electric conductivity and capacity of disperse systems. Phys Rev. 1924;24(5):575.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51572149), Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, Opening Project of Engineering Research Center of Nano-Geo Materials of Ministry of Education of China University of Geosciences (No. NGM2018KF010), the National Key Research and Development Program of China (No. 2016YFA0201003) and the Fund of Key Laboratory of Advanced Materials of Ministry of Education (No. 2017AML11). We thank Jabran Ahmad in School of Environment at Tsinghua University for providing us Milli-Q Ultrapure Water and Yajie Huang in School of Materials Science and Engineering at Tsinghua University for the help on AFM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Liang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdan, A., Wang, JZ., Hu, BK. et al. Boron nitride/agarose hydrogel composites with high thermal conductivities. Rare Met. 39, 375–382 (2020). https://doi.org/10.1007/s12598-019-01322-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01322-2

Keywords

Navigation