Skip to main content
Log in

Enhanced potassium storage of carbon nanofibers as binder-free anodes enabled by coupling ultra-small amorphous Sb2O3, graphene modification and sulfur doping

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Considering the intrinsic advantages of natural copiousness and cost-effectiveness of potassium resource, potassium-ion batteries (KIBs) are booming as prospective alternatives to lithium-ion batteries (LIBs) in large-scale energy storage scenarios. Nevertheless, lacking desirable electrodes for reversibly hosting the bulky K+ hinders the widespread application of KIBs, and it needs to be urgently solved. Hereon, the porous S-doped Sb2O3-graphene-carbon (SAGC) nanofibers are manufactured through an adjustable and facile approach, which involves electrospinning, in situ etching and sulfuration. The synthesized SAGC is featured by the ultra-small amorphous Sb2O3 homogeneously wrapped inside the carbon matrix, as well as the co-incorporation of graphene and sulfur. Tentatively, the SAGC nanofiber sheets are applied as binder-free anodes for KIBs, exhibiting a prominent cycling life (256.72 mAh·g−1 over 150 cycles at 100 mA·g−1) and rate ·g−1 over 100 cycles at 1 A·g−1). The positive synergy among all the active components accounts for the distinguished performances of the SAGC. By reinforcing the tolerability to the swelling stress, producing the valid electrochemical active sites, and promoting the charge transferring for reversible K+ uptake, the SAGC finally renders the excellent cyclability, capacity, and rate capability. Moreover, the extrinsic electrochemical pseudocapacitance characteristics induced by the porous carbon substrate elevate the K-storage capacity of the SAGC as well. It is hoped that the conclusions drawn may offer new insights into a direction for the high-performance binder-free KIB anodes.

摘要

考虑到钾资源矿藏丰裕、成本低廉等天然优势,钾离子电池(KIBs)正在蓬勃发展,有望代替锂离子电池(LIBs)应用于大规模储能场景。尽管如此,缺乏能够容纳大尺寸K+可逆嵌脱的优质电极阻碍了KIB 的广泛应用,这一问题亟待解决。为此,本文提出简单易调的新方法(包括静电纺丝、原位刻蚀和硫化)制备多孔S掺杂的 Sb2O3-石墨烯-碳(SAGC)纳米纤维,其特征是超小非晶Sb2O3均匀包裹在碳基体内,以及石墨烯和硫共掺。制备的SAGC纳米纤维毡作为无粘结剂电极进行储钾,展现了显著的循环寿命(100 mA·g−1下150 次循环后保留容量为 256.72 mAh·g−1)和倍率能力(1 A·g−1下 100 次循环后保留容量为174.84 mAh·g−1)。各成分之间有积极的协同效应,是 SAGC 优异性能的原因。通过增强对膨胀应力的耐受性,提高有效的电化学活性位点数量,及促进K+电荷转移,SAGC 最终呈现出优异的循环稳定性、可逆容量和倍率能力。此外,SAGC 电极的多孔碳基底诱导的赝电容行为也提升了储钾容量。本工作所得出的结论有望为高性能无粘结剂储钾负极的发展提供新思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang YN, Su CY, Chen JL, Huang WH, Lou R. Recent progress of transition metal-based biomass-derived carbon composites for supercapacitor. Rare Met. 2023;42(3):769. https://doi.org/10.1007/s12598-022-02142-7.

  2. Huang Z, Fang BL, Deng J. Multi-objective optimization strategy for distribution network considering V2G-enabled electric vehicles in building integrated energy system. Prot Control Mod Power Syst. 2020;5(1):1. https://doi.org/10.1186/s41601-020-0154-0.

    Article  Google Scholar 

  3. Zhang CL, Zhao HP, Lei Y. Recent research progress of anode materials for potassium-ion batteries. Energy Environ Mater. 2020;3(2):105. https://doi.org/10.1002/eem2.12059.

    Article  CAS  Google Scholar 

  4. Liang FW, Xia YH, Zhang YL, Zhao SP, Yang SC, Liu XH. Lithium plating mechanism, model and fast charging strategy of lithium-ion batteries under fast charging condition. Chin J Rare Met. 2022;46(9):1235. https://doi.org/10.13373/j.cnki.cjrm.XY21030007.

    Article  Google Scholar 

  5. Huang Z, Guo ZW, Ma PB, Wang MM, Long YH, Zhang M. Economic-environmental scheduling of microgrid considering V2G-enabled electric vehicles integration. Sustain Energy Grids. 2022;32:100872. https://doi.org/10.1016/j.segan.2022.100872.

    Article  Google Scholar 

  6. Xie XF, Fang GZ, Hu YZ, Cao XX, Zhu T, Pan AQ. Complementary two-phase anode improving stability and conductivity for lithium storage performance. Rare Met. 2023;42(1):85. https://doi.org/10.1007/s12598-022-02083-1.

    Article  CAS  Google Scholar 

  7. He HC, Lian JC, Chen CM, Xiong QT, Li CC, Zhang M. Enabling multi-chemisorption sites on carbon nanofibers cathodes by an in-situ exfoliation strategy for high-performance Zn-ion hybrid capacitors. Nano-micro Lett. 2022;14(1):106. https://doi.org/10.1007/s40820-022-00839-z.

    Article  CAS  Google Scholar 

  8. Hirsh HS, Li YX, Tan DHS, Zhang MH, Zhao EY, Meng YS. Sodium-ion batteries paving the way for grid energy storage. Adv Energy Mater. 2010;10(32):2001274. https://doi.org/10.1002/aenm.202001274.

  9. Yuan F, Shao YC, Wang B, Wu YS, Zhang D, Li ZJ, Wu YMA. Recent progress in application of cobalt-based compounds as anode materials for high-performance potassium-ion batteries. Rare Met. 2022;41(10):3301. https://doi.org/10.1007/s12598-022-02052-8.

    Article  CAS  Google Scholar 

  10. Fu T, Li PC, Ding He HC., SS, Cai Y, Zhang M. Electrospinning with sulfur powder to prepare CNF@G-Fe9S10 nanofibers with controllable particles distribution for stable potassium-ion storage. Rare Met. 2023;42(1):111. https://doi.org/10.1007/s12598-022-02103-0.

    Article  CAS  Google Scholar 

  11. Huang Z, Long YH, Zhang M. Recent progress on application and mechanism for potassium storage of carbon-based anode materials. Chin J Rare Met. 2022;46(11):1493. https://doi.org/10.13373/j.cnki.cjrm.XY21040027.

    Article  Google Scholar 

  12. Ming FW, Liang HF, Zhang WL, Ming J, Lei YJ, Emwas AH, Alshareef HN. Porous MXenes enable high performance potassium ion capacitors. Nano Energy. 2019;62(8):853. https://doi.org/10.1016/j.nanoen.2019.06.013.

    Article  CAS  Google Scholar 

  13. Su DW, McDonagh A, Qiao SZ, Wang GX. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv Mater. 2017;29(1):1604007. https://doi.org/10.1002/adma.201604007.

    Article  CAS  Google Scholar 

  14. Bai YF, Fu WB, Chen WH, Chen ZC, Pan XJ, Lv XX, Wu JC, Pan XB. Perylenetetracarboxylic diimide as a high-rate anode for potassium-ion batteries. J Mater Chem A. 2019;7(42):24454. https://doi.org/10.1039/C9TA07605K.

    Article  CAS  Google Scholar 

  15. Sha M, Liu L, Zhao HP, Lei Y. Anode materials for potassium-ion batteries: current status and prospects. Carbon Energy. 2020;2(3):350. https://doi.org/10.1002/cey2.57.

    Article  CAS  Google Scholar 

  16. Li N, Li YR, Zhu XH, Huang CX, Kai JJ, Fan J. Theoretical investigation of the structure-property correlation of Mxenes as anode materials for alkali metal ion batteries. J Phys Chem C. 2020;124(28):14978. https://doi.org/10.1021/acs.jpcc.0c02968.

    Article  CAS  Google Scholar 

  17. Wang K, Li NN, Sun L, Zhang J, Liu XH. Free-standing N-doped carbon nanotube films with tunable defects as a high capacity anode for potassium-ion batteries. ACS Appl Mater Interfaces. 2020;12(33):37506. https://doi.org/10.1021/acsami.0c12288.

    Article  CAS  Google Scholar 

  18. Cao B, Zhang Q, Liu H, Xu B, Zhang SL, Zhou TF, Mao JF, Pang WK, Guo ZP, Li A, Zhou JS, Chen XH, Song HH. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv Energy Mater. 2018;8(25):1801149. https://doi.org/10.1002/aenm.201801149.

    Article  CAS  Google Scholar 

  19. Wang G, Xiong XH, Xie D, Lin ZH, Zheng J, Zheng FH, Li YP, Liu YZ, Yang CH, Liu ML. Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. J Mater Chem A. 2018;6(47):24317. https://doi.org/10.1039/C8TA09751H.

    Article  CAS  Google Scholar 

  20. Zhang EJ, Jia XX, Wang B, Wang J, Yu XZ, Lu BA. Carbon Dots@rGO paper as freestanding and flexible potassium-ion batteries anode. Adv Sci. 2020;7(15):2000470. https://doi.org/10.1002/advs.202000470.

    Article  CAS  Google Scholar 

  21. Li YM, Hu YS, Titirici MM, Chen LQ, Huang XJ. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater. 2016;6(18):1600659. https://doi.org/10.1002/aenm.201600659.

    Article  CAS  Google Scholar 

  22. Han JH, He J, Zou QY, Zhang J, Yang Z, Zhao ZW, Chen HX, Yue HJ, Wang DW, Lin HC, Liu HD, Zhong GM, Peng ZQ. High-capacity potassium ion storage mechanisms in a soft carbon revealed by solid-state NMR spectroscopy. Rare Met. 2022;41(11):3752. https://doi.org/10.1007/s12598-022-02063-5.

    Article  CAS  Google Scholar 

  23. Jian ZL, Hwang S, Li ZF, Hernandez AS, Wang XF, Xing ZY, Su D, Ji XL. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv Funct Mater. 2017;27(26):1700324. https://doi.org/10.1002/adfm.201700324.

    Article  CAS  Google Scholar 

  24. Fan L, Ma R, Zhang QF, Jia XX, Lu BA. Graphite anode for a potassium-ion battery with unprecedented performance. Angew Chem. 2019;131(31):10610. https://doi.org/10.1002/ange.201904258.

    Article  Google Scholar 

  25. Li XD, Li JL, Ma L, Yu CY, Ji Z, Pan LK, Mai WJ. Graphite anode for potassium ion batteries: current status and perspective. Energy Environm Mater. 2022;5(2):458. https://doi.org/10.1002/eem2.12194.

    Article  CAS  Google Scholar 

  26. Ke CZ, Liu F, Zheng ZM, Zhang HH, Cai MT, Li M, Yan QZ, Chen HX, Zhang QB. Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Met. 2021;40(6):1347. https://doi.org/10.1007/s12598-021-01716-1.

    Article  CAS  Google Scholar 

  27. Xia SX, Yan YH, Sun H, Yang JH, Zheng SY. Engineering unique vesicle structured tin phosphides@P/N co-doped carbon anode for high-performance sodium/lithium-ion batteries. Rare Met. 2022;41(5):1496. https://doi.org/10.1007/s12598-021-01945-4.

    Article  CAS  Google Scholar 

  28. Xu Y, Wang CL, Niu P, Li ZQ, Wei LZ, Yao G, Zheng FC, Chen QW. Tuning the nitrogen-doping configuration in carbon materials via sulfur doping for ultrastable potassium ion storage. J Mater Chem A. 2021;9(29):16150. https://doi.org/10.1039/D1TA03811G.

    Article  CAS  Google Scholar 

  29. Kumar R, Sahoo S, Joanni E, Singh RK, Maegawa K, Tan WK, Kawamura G, Kar KK, Matsuda A. Heteroatom doped graphene engineering for energy storage and conversion. Mater Today. 2020;39(10):47. https://doi.org/10.1016/j.mattod.2020.04.010.

    Article  CAS  Google Scholar 

  30. Chi CL, Liu Z, Lu XL, Meng Y, Huangfu C, Yan YC, Qiu ZP, Qi B, Wang GW, Pang H, Wei T, Fan ZJ. Balance of sulfur doping content and conductivity of hard carbon anode for high-performance K-ion storage. Energy Storage Mater. 2023;54(1):668. https://doi.org/10.1016/j.ensm.2022.11.008.

    Article  Google Scholar 

  31. McCulloch WD, Ren XD, Yu MZ, Huang ZJ, Wu YY. Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl Mater Interfaces. 2015;7(47):26158. https://doi.org/10.1021/acsami.5b08037.

    Article  CAS  Google Scholar 

  32. Cheng N, Zhao JG, Fan L, Liu ZM, Chen SH, Ding HB, Yu XZ, Liu ZG, Lu BA. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chem Commun. 2019;55(83):12511. https://doi.org/10.1039/C9CC06561J.

    Article  CAS  Google Scholar 

  33. Huang Z, Ding SS, Li PC, Chen CM, Zhang M. Flexible Sb-graphene-carbon nanofibers as binder-free anodes for potassium-ion batteries with enhanced properties. Nanotechnology. 2020;32(2):025401. https://doi.org/10.1088/1361-6528/abbb4d.

    Article  CAS  Google Scholar 

  34. Mo YC, Lin JS, Li SC, Yu J. Anchoring Mo2C nanoparticles on vertical graphene nanosheets as a highly efficient catalytic interlayer for Li-S batteries. Chem Eng J. 2022;433(4):134306. https://doi.org/10.1016/j.cej.2021.134306.

    Article  CAS  Google Scholar 

  35. Jang JSC, Li JB, Lee SL, Chang YS, Jian SR, Huang JC, Nieh TG. Prominent plasticity of Mg-based bulk metallic glass composites by ex-situ spherical Ti particles. Intermetallics. 2012;30(11):25. https://doi.org/10.1016/j.intermet.2012.03.038.

    Article  CAS  Google Scholar 

  36. Lu FQ, Chen Q, Geng SP, Allix M, Wu H, Huang QZ, Kuang XJ. Innovative lithium storage enhancement in cation-deficient anatase via layered oxide hydrothermal transformation. J Mater Chem A. 2018;6(10):24232. https://doi.org/10.1039/C8TA07605G.

    Article  CAS  Google Scholar 

  37. Ma Q, Song LD, Wan Y, Dong KZ, Wang ZY, Wang D, Sun HY, Luo SH, Liu YG. Precise tuning of low-crystalline Sb@Sb2O3 confined in 3D porous carbon network for fast and stable potassium ion storage. J Mater Sci Technol. 2021;94(12):123. https://doi.org/10.1016/j.jmst.2021.03.030.

    Article  CAS  Google Scholar 

  38. Pan J, Wang NN, Zhou YL, Yang XF, Zhou WY, Qian YT, Yang J. Simple synthesis of a porous Sb/Sb2O3 nanocomposite for a high-capacity anode material in Na-ion batteries. Nano Res. 2017;10(5):1794. https://doi.org/10.1007/s12274-017-1501-y.

    Article  CAS  Google Scholar 

  39. Huang Z, Chen Z, Ding SS, Chen CM, Zhang M. Multi-protection from nanochannels and graphene of SnSb-graphene-carbon composites ensuring high properties for potassium-ion batteries. Solid State Ionics. 2018;324(10):267. https://doi.org/10.1016/j.ssi.2018.07.019.

    Article  CAS  Google Scholar 

  40. Zhang QF, Qiao ZS, Cao XR, Qu BH, Yuan J, Fan TE, Zheng HF, Cui JQ, Wu SQ, Xie QS, Peng DL. Rational integration of spatial confinement and polysulfide conversion catalysts for high sulfur loading lithium-sulfur batteries. Nanoscale Horiz. 2020;5(2):720. https://doi.org/10.1039/C9NH00663J.

    Article  CAS  Google Scholar 

  41. Zhang Q, Zeng YP, Ling CS, Wang L, Wang ZY, Fan TE, Wang H, Xiao JR, Li XY, Qu BH. Boosting fast sodium ion storage by synergistic effect of heterointerface engineering and nitrogen doping porous carbon nanofibers. Small. 2022;18(13):2107514. https://doi.org/10.1002/smll.202107514.

    Article  CAS  Google Scholar 

  42. Qiu WD, Xiao HB, Li Y, Lu XH, Tong YX. Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder-free anode for flexible advanced potassium ion full batteries. Small. 2019;15(23):1901285. https://doi.org/10.1002/smll.201901285.

    Article  CAS  Google Scholar 

  43. Ye MH, Dong ZL, Hu CG, Cheng HH, Shao HB, Chen N, Qu LT. Uniquely arranged graphene-on-graphene structure as a binder-free anode for high-performance lithium-ion batteries. Small. 2014;10(24):5035. https://doi.org/10.1002/smll.201401610.

    Article  CAS  Google Scholar 

  44. Guo LG, Sun H, Qin CQ, Li W, Wang F, Song WL, Du J, Zhong F, Ding Y. Flexible Fe3O4 nanoparticles/N-doped carbon nanofibers hybrid film as binder-free anode materials for lithium-ion batteries. Appl Surf Sci. 2018;459(11):263. https://doi.org/10.1016/j.apsusc.2018.08.001.

    Article  CAS  Google Scholar 

  45. Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339. https://doi.org/10.1021/ja01539a017.

    Article  CAS  Google Scholar 

  46. Cho JS, Hong YJ, Kang YC. Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-ion batteries. ACS Nano. 2015;9(4):4026. https://doi.org/10.1021/acsnano.5b00088.

    Article  CAS  Google Scholar 

  47. Hu JT, Zheng JX, Tian LL, Duan YD, Lin LP, Cui SH, Peng H, Liu TC, Wang XW, Pan F. A core-shell nanohollow-γ-Fe2O3@graphene hybrid prepared through the Kirkendall process as a high performance anode material for lithium ion batteries. Chem Commun. 2015;51(37):7855. https://doi.org/10.1039/C5CC01195G.

    Article  CAS  Google Scholar 

  48. Yi Z, Han QG, Li X, Wu YM, Cheng Y, Wang LM. Two-step oxidation of bulk Sb to one-dimensional Sb2O4 submicron-tubes as advanced anode materials for lithium-ion and sodium-ion batteries. Chem Eng J. 2017;315(5):101. https://doi.org/10.1016/j.cej.2017.01.020.

    Article  CAS  Google Scholar 

  49. Jiang X, Yin D, Yang M, Du J, Wang WW, Zhang L, Yang LB, Han XX, Zhao B. Revealing interfacial charge transfer in TiO2/reduced graphene oxide nanocomposite by surface-enhanced Raman scattering (SERS): simultaneous a superior SERS-active substrate. Appl Surf Sci. 2019;487(9):938. https://doi.org/10.1016/j.apsusc.2019.05.122.

    Article  CAS  Google Scholar 

  50. Bodenes L, Darwiche A, Monconduit L, Martinez H. The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J Power Sources. 2015;273(1):14. https://doi.org/10.1016/j.jpowsour.2014.09.037.

    Article  CAS  Google Scholar 

  51. Deng BL, Guo LP, Lu Y, Rong HB, Cheng DC. Sulfur-nitrogen co-doped graphene supported cobalt-nickel sulfide rGO@SN-CoNi2S4 as highly efficient bifunctional catalysts for hydrogen/oxygen evolution reactions. Rare Met. 2022;41(3): 911. https://doi.org/10.1007/s12598-021-01828-8.

  52. Tang TY, Zhang LG, Guo ZF, Gu XX. Development of cathode and anode materials in lithium sulfur batteries. Chin J Rare Met. 2022;46(7):954. https://doi.org/10.13373/j.cnki.cjrm.XY21070001.

  53. Ni JF, Fu SD, Wu C, Maier J, Yu Y, Li L. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv Mater. 2016;28(11):2259. https://doi.org/10.1002/adma.201504412.

    Article  CAS  Google Scholar 

  54. Wu L, Lu HY, Xiao LF, Qian JF, Ai XP, Yang HX, Cao YL. A tin (ii) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. J Mater Chem A. 2014;2(39):16424. https://doi.org/10.1039/C4TA03365E.

    Article  CAS  Google Scholar 

  55. Zheng Y, He YB, Qian K, Li BH, Wang XD, Li JL, Miao C, Kang FY. Effects of state of charge on the degradation of LiFePO4/graphite batteries during accelerated storage test. J Alloys Compd. 2015;639(8):406. https://doi.org/10.1016/j.jallcom.2015.03.169.

    Article  CAS  Google Scholar 

  56. Ge XF, Liu SH, Qiao M, Du YC, Li YF, Bao JC, Zhou XS. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew Chem Int Ed. 2019;58(41):14578. https://doi.org/10.1002/anie.201908918.

    Article  CAS  Google Scholar 

  57. Deng LQ, Niu XG, Ma GS, Yang Z, Zeng L, Zhu YJ, Guo L. Layered potassium vanadate K0.5V2O5 as a cathode material for nonaqueous potassium ion batteries. Adv Funct Mater. 2018;28(49):1800670. https://doi.org/10.1002/adfm.201800670.

    Article  CAS  Google Scholar 

  58. Yu HX, Cheng X, Xia MT, Liu TT, Ye WQ, Zheng RT, Long NB, Shui M, Shu J. Pretreated commercial TiSe2 as an insertion-type potassium container for constructing “Rocking-Chair” type potassium ion batteries. Energy Storage Mater. 2019;22(11):154. https://doi.org/10.1016/j.ensm.2019.01.010.

    Article  Google Scholar 

  59. Zhou JB, Liu XJ, Zhu LQ, Niu SW, Cai JY, Zheng XS, Ye J, Zheng L, Zhu ZX, Sun D, Lu Z, Zang YP, Wu YS, Xiao JX, Zhu YC, Wang GM, Qian YT. High-spin sulfur-mediated phosphorous activation enables safe and fast phosphorus anodes for sodium-ion batteries. Chem. 2020;6(1):221. https://doi.org/10.1016/j.chempr.2019.10.021.

    Article  CAS  Google Scholar 

  60. Han XY, Chang CX, Yuan LJ, Sun TL, Sun J. Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv Mater. 2007;19(12):1616. https://doi.org/10.1002/adma.200602584.

    Article  CAS  Google Scholar 

  61. Fang YZ, Hu R, Liu BY, Zhang YY, Zhu K, Yan J, Ye K, Cheng K, Wang GL, Cao DX. MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J Mater Chem A. 2019;7(10):5363. https://doi.org/10.1039/C8TA12069B.

    Article  CAS  Google Scholar 

  62. Li DD, Zhang L, Chen HB, Wang J, Ding LX, Wang SQ, Ashman PJ, Wang HH. Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries. J Mater Chem A. 2016;4(22):8630. https://doi.org/10.1039/C6TA02139E.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51404103, 51574117 and 61376073), Hunan Provincial Education Department (No. 20C0613) and the College Student Innovation and Entrepreneurship Training Program of Hunan Province (No. S2022115350874).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5733 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Lou, YK., Peng, L. et al. Enhanced potassium storage of carbon nanofibers as binder-free anodes enabled by coupling ultra-small amorphous Sb2O3, graphene modification and sulfur doping. Rare Met. 43, 51–64 (2024). https://doi.org/10.1007/s12598-023-02413-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02413-x

Keywords

Navigation