Skip to main content
Log in

Prussian blue analogues-derived nitrogen-doped carbon-coated FeO/CoO hollow nanocages as a high-performance anode material for Li storage

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The design of electrode materials with specific structures is considered a promising approach for improving the performance of lithium-ion batteries (LIBs). In this paper, FeO/CoO hollow nanocages coated with a N-doped carbon layer (FCO@NC) was prepared using Fe-Co-based Prussian blue analogs (PBA) as a precursor. During the synthesis, dopamine was the carbon and nitrogen source. The reducing atmosphere was assured via NH3/Ar, which regulated the vacancies in the structure of FCO@NC as well as increased its conductivity. When used as anode materials for LIBs, the FCO@NC nanocages deliver a high reversible capacity of 774.89 mAh·g−1 at 0.3 A·g−1 after 200 cycles with a capacity retention rate of 80.4% and 426.76 mAh·g−1 after 500 cycles at a high current density of 1 A·g−1. It is demonstrated that the hollow nanocage structure can effectively enhance the cycle stability, and the heat treatment in NH3/Ar atmosphere contributes to the oxygen vacancy content of the electrode materials, further facilitating its conductivity and electrochemical performance.

Graphical abstract

摘要

设计具有特殊结构的负极材料是改善锂离子电池性能的有效措施。本文以铁钴基普鲁士蓝类似物(PBA)为前驱体,制备了包覆氮掺杂碳层(FCO@NC)的FeO/CoO中空纳米笼。以多巴胺为氮源和碳源,煅烧过程中通过NH3/Ar调节FCO@NC结构中的空位,提高其电导率。当用作l锂离子电池负极材料时,FCO@NC纳米笼在200次循环后在0.3 A·g−1电流密度下可保持774.89 mAh·g−1的高可逆容量,容量保持率为80.4%,在1 A·g−1的高电流密度下500次循环后容量为426.76 mAh·g−1。结果表明,中空纳米笼结构可以有效提高循环稳定性,在NH3/Ar气氛中的热处理有助于增加电极材料的氧空位含量,进一步促进其导电性和电化学性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhu Y, Choi SH, Fan X, Shin J, Ma Z, Zachariah MR, Choi JW, Wang C. Recent progress on spray pyrolysis for high performance electrode materials in lithium and sodium rechargeable batteries. Adv Energy Mater. 2016;7(7):1601578. https://doi.org/10.1002/aenm.201601578.

    Article  CAS  Google Scholar 

  2. Yu J, Meng BC, Wang LJ, Wang Q, Huang WL, Wang XY, Fang Z. Depositing natural stibnite on 3D TiO2 nanotube array networks as high-performance thin-film anode for lithium-ion batteries. Rare Met. 2021;40(11):3215. https://doi.org/10.1007/s12598-020-01658-0.

    Article  CAS  Google Scholar 

  3. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energ Environ Sci. 2011;4(9):3243. https://doi.org/10.1039/c1ee01598b.

    Article  CAS  Google Scholar 

  4. Ma LX, Chen TD, Hai CX, Dong SD, He X, Xu Q, Feng H, Xin A, Chen JT, Zhou Y. Surface engineering of Li- and Mn-rich layered oxides for superior Li-ion battery. Tungsten. 2022. https://doi.org/10.1007/s42864-022-00187-w.

  5. Dutta S, Patil R, Dey T. Electron transfer-driven single and multi-enzyme biofuel cells for self-powering and energy bioscience. Nano Energy. 2022;96:107074. https://doi.org/10.1016/j.nanoen.2022.107074.

    Article  CAS  Google Scholar 

  6. Liu WJ, Yuan M, Lian JB, Li GC, Li QP, Qiao F, Zhao Y. Embedding partial sulfurization of iron–cobalt oxide nanoparticles into carbon nanofibers as an efficient electrode for the advanced asymmetric supercapacitor. Tungsten. 2023;5(1):118. https://doi.org/10.1007/s42864-022-00157-2.

  7. Manikkoth ST, Thulasi KM, Paravannoor A, Palantavida S, Bhagiyalakshmi M, Vijayan BK. Designing micro/nano hybrid TNT@α-Fe2O3 composites for high performance supercapacitors. Nano Struct Nano Object. 2020;24:100543. https://doi.org/10.1016/j.nanoso.2020.100543.

    Article  CAS  Google Scholar 

  8. Ghigna P, Airoldi L, Fracchia M, Callegari D, Anselmi-Tamburini U, D’angelo P, Pianta N, Ruffo R, Cibin G, De Souza DO, Quartarone E. Lithiation mechanism in high-entropy oxides as anode materials for Li-ion batteries: an operando XAS study. ACS Appl Mater Inter. 2020;12(45):50344. https://doi.org/10.1021/acsami.0c13161.

    Article  CAS  Google Scholar 

  9. Li Q, Li H, Xia Q, Hu Z, Zhu Y, Yan S, Ge C, Zhang Q, Wang X, Shang X, Fan S, Long Y, Gu L, Miao GX, Yu G, Moodera JS. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat Mater. 2021;20(1):76. https://doi.org/10.1038/s41563-020-0756-y.

    Article  CAS  Google Scholar 

  10. Yu LH, Tao X, Feng SR, Liu JT, Zhang LL, Zhao GZ, Zhu G. Recent development of three-dimension printed graphene oxide and MXene-based energy storage devices. Tungsten. 2022. https://doi.org/10.1007/s42864-022-00181-2.

  11. Kim H, Kim H, Kim H, Kim J, Yoon G, Lim K, Yoon WS, Kang K. Understanding origin of voltage hysteresis in conversion reaction for Na rechargeable batteries: the case of cobalt oxides. Adv Funct Mater. 2016;26(28):5042. https://doi.org/10.1002/adfm.201601357.

    Article  CAS  Google Scholar 

  12. Xu GL, Sheng T, Chong L, Ma T, Sun CJ, Zuo X, Liu DJ, Ren Y, Zhang X, Liu Y, Heald SM, Sun SG, Chen Z, Amine K. Insights into the distinct lithiation/sodiation of porous cobalt oxide by in operando synchrotron X-ray techniques and ab initio molecular dynamics simulations. Nano Lett. 2017;17(2):953. https://doi.org/10.1021/acs.nanolett.6b04294.

    Article  CAS  Google Scholar 

  13. Wu HB, Chen JS, Hng HH, Lou XW. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale. 2012;4(8):2526. https://doi.org/10.1039/c2nr11966h.

    Article  CAS  Google Scholar 

  14. Kumar V, Ahlawat DS, Aariful Islam S, Singh A. Ce doping induced modifications in structural, electrical and magnetic behaviour of hematite nanoparticles. Mater Sci Eng B. 2021;272:115327. https://doi.org/10.1016/j.mseb.2021.115327.

    Article  CAS  Google Scholar 

  15. Wang F, Lu C, Qin Y, Liang C, Zhao M, Yang S, Sun Z, Song X. Solid state coalescence growth and electrochemical performance of plate-like Co3O4 mesocrystals as anode materials for lithium-ion batteries. J Power Sourc. 2013;235:67. https://doi.org/10.1016/j.jpowsour.2013.01.190.

    Article  CAS  Google Scholar 

  16. Wu HB, Zhang G, Yu L, Lou XWD. One-dimensional metal oxide-carbon hybrid nanostructures for electrochemical energy storage. Nanoscale Horiz. 2016;1(1):27. https://doi.org/10.1039/c5nh00023h.

    Article  CAS  Google Scholar 

  17. Etacheri V, Seisenbaeva GA, Caruthers J, Daniel G, Nedelec JM, Kessler VG, Pol VG. Ordered network of interconnected SnO2 nanoparticles for excellent lithium-ion storage. Adv Energy Mater. 2015;5(5):1401289. https://doi.org/10.1002/aenm.201401289.

    Article  CAS  Google Scholar 

  18. Wang J, Yang N, Tang H, Dong Z, Jin Q, Yang M, Kisailus D, Zhao H, Tang Z, Wang D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew Chem Int Ed Engl. 2013;52(25):6417. https://doi.org/10.1002/anie.201301622.

    Article  CAS  Google Scholar 

  19. Wang LP, Leconte Y, Feng Z, Wei C, Zhao Y, Ma Q, Xu W, Bourrioux S, Azais P, Srinivasan M, Xu ZJ. Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties. Adv Mater. 2017;29(6):1603286. https://doi.org/10.1002/adma.201603286.

    Article  CAS  Google Scholar 

  20. Ren YF, He ZL, Zhao HZ, Zhu T. Fabrication of MOF-derived mixed metal oxides with carbon residues for pseudocapacitors with long cycle life. Rare Met. 2022;41(3): 830. https://doi.org/10.1007/s12598-021-01836-8.

  21. Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou HC. Stable metal-organic frameworks: design, synthesis, and applications. Adv Mater. 2018;30(37):1704303. https://doi.org/10.1002/adma.201704303.

    Article  CAS  Google Scholar 

  22. Zhao Y, Dongfang N, Triana CA, Huang C, Erni R, Wan W, Li J, Stoian D, Pan L, Zhang P, Lan J, Iannuzzi M, Patzke GR. Dynamics and control of active sites in hierarchically nanostructured cobalt phosphide/chalcogenide-based electrocatalysts for water splitting. Energy Environ Sci. 2022;15(2):727. https://doi.org/10.1039/d1ee02249k.

    Article  CAS  Google Scholar 

  23. Xiao X, Deng X, Tian Y, Tao S, Song Z, Deng W, Hou H, Zou G, Ji X. Ultrathin two-dimensional nanosheet metal-organic frameworks with high-density ligand active sites for advanced lithium-ion capacitors. Nano Energy. 2022;103:107797. https://doi.org/10.1016/j.nanoen.2022.107797.

    Article  CAS  Google Scholar 

  24. Wang Z, Yuan S, Zang T, Li T, Zhou Y, Liu J, Liu T, Wang K, Wang Q. Preparation of a Pt-Ni2P/NF catalyst for highly efficient hydrogen evolution using a magnetic field to promote Ni-Pt galvanic replacement. J Mater Sci Technol. 2023;142:144. https://doi.org/10.1016/j.jmst.2022.09.030.

    Article  CAS  Google Scholar 

  25. Liu Q, Zhang SJ, Xiang CC, Luo CX, Zhang PF, Shi CG, Zhou Y, Li JT, Huang L, Sun SG. Cubic MnS-FeS2 composites derived from a prussian blue analogue as anode materials for sodium-ion batteries with long-term cycle stability. ACS Appl Mater Inter. 2020;12(39):43624. https://doi.org/10.1021/acsami.0c10874.

    Article  Google Scholar 

  26. Li T, Hu Y, Liu K, Yin J, Li Y, Fu G, Zhang Y, Tang Y. Hollow yolk-shell nanoboxes assembled by Fe-doped Mn3O4 nanosheets for high-efficiency electrocatalytic oxygen reduction in Zn-air battery. Chem Eng J. 2022;427:131992. https://doi.org/10.1016/j.cej.2021.131992.

    Article  CAS  Google Scholar 

  27. Ren L, Wang J-G, Liu H, Shao M, Wei B. Metal-organic-framework-derived hollow polyhedrons of prussian blue analogues for high power grid-scale energy storage. Electrochim Acta. 2019;321:134671. https://doi.org/10.1016/j.electacta.2019.134671.

    Article  CAS  Google Scholar 

  28. Zeng Y, Lu XF, Zhang SL, Luan D, Li S, Lou XWD. Construction of Co-Mn Prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew Chem Int Ed Engl. 2021;60(41):22189. https://doi.org/10.1002/anie.202107697.

    Article  CAS  Google Scholar 

  29. Weng W, Lin J, Du Y, Ge X, Zhou X, Bao J. Template-free synthesis of metal oxide hollow micro-/nanospheres via Ostwald ripening for lithium-ion batteries. J Mater Chem A. 2018;6(22):10168. https://doi.org/10.1039/c8ta03161d.

    Article  CAS  Google Scholar 

  30. Cheng H, Pan Y, Wang X, Liu C, Shen C, Schubert DW, Guo Z, Liu X. Ni flower/MXene-mlamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 2022;14(1):63. https://doi.org/10.1007/s40820-022-00812-w.

    Article  CAS  Google Scholar 

  31. Zou F, Chen YM, Liu K, Yu Z, Liang W, Bhaway SM, Gao M, Zhu Y. Metal organic frameworks derived hierarchical hollow NiO/Ni/Graphene composites for lithium and sodium storage. ACS Nano. 2016;10(1):377. https://doi.org/10.1021/acsnano.5b05041.

    Article  CAS  Google Scholar 

  32. Chen Z, Wang S, Zhang Z, Zhou W, Chen D. Facile synthesis of Co3O4/Co@N-doped carbon nanotubes as anode with improved cycling stability for Li-ion batteries. Electrochim Acta. 2018;292:575. https://doi.org/10.1016/j.electacta.2018.09.189.

    Article  CAS  Google Scholar 

  33. Gu XX, Kuang LY, Lin J, Qiao S, Ma S, Li Y, Wang Q, Dai JH, Zhou X, Zhou HY, Chen TZ.Highly porous nitrogen-doped biochar nanosheets for high-performance Li-Se batteries. Rare Met. 2023. 42(3):822. https://doi.org/10.1007/s12598-022-02163-2.

  34. Liu Y, Zeng T, Li G, Wan T, Li M, Zhang X, Li M, Mingru S, Dou A, Wensai Zeng Y, Zhou RG, Chu D. The surface double-coupling on single-crystal LiNi0.8Co0.1Mn0.1O2 for inhibiting the formation of intragranular cracks and oxygen vacancies. Energy Storage Mater. 2022;52:534–46. https://doi.org/10.1016/j.ensm.2022.08.026.

    Article  Google Scholar 

  35. Zhu Y, Hu A, Tang Q, Zhang S, Deng W, Li Y, Liu Z, Fan B, Xiao K, Liu J, Chen X. Compact-nanobox engineering of transition metal oxides with enhanced initial coulombic efficiency for lithium-ion battery anodes. ACS Appl Mater Inter. 2018;10(10):8955. https://doi.org/10.1021/acsami.7b19379.

    Article  CAS  Google Scholar 

  36. Cu Q, Shang CQ, Zhou GF, Wang X. Freestanding MoSe2 nanoflowers for superior Li/Na storage properties. Tungsten. 2022. https://doi.org/10.1007/s42864-022-00167-0.

  37. Wang J-F, Zhang J-J, He D-N. Flower-like TiO2-B particles wrapped by graphene with different contents as an anode material for lithium-ion batteries. Nano Struct Nano Object. 2018;15:216. https://doi.org/10.1016/j.nanoso.2018.03.008.

    Article  CAS  Google Scholar 

  38. Liu YP, Xu CX, Ren WQ, Hu LY, Fu WB, Wang W, Yin H, He BH, Hou ZH, Chen L. Self-template synthesis of peapod-like MnO@N-doped hollow carbon nanotubes as an advanced anode for lithium-ion batteries. Rare Met. 2023. 42(3):929. https://doi.org/10.1007/s12598-022-02203-x.

  39. Jiang T, Bu F, Feng X, Shakir I, Hao G, Xu Y. Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano. 2017;11(5):5140. https://doi.org/10.1021/acsnano.7b02198.

    Article  CAS  Google Scholar 

  40. Su M, Li J, He K, Fu K, Nui P, Chen Y, Zhou Y, Dou A, Hou X, Liu Y. NiSb/nitrogen-doped carbon derived from Ni-based framework as advanced anode for lithium-ion batteries. J Colloid Interface Sci. 2023;629:83. https://doi.org/10.1016/j.jcis.2022.08.126.

    Article  CAS  Google Scholar 

  41. Chen H, He J, Li Y, Luo S, Sun L, Ren X, Deng L, Zhang P, Gao Y, Liu J. Hierarchical CuOx-Co3O4 heterostructure nanowires decorated on 3D porous nitrogen-doped carbon nanofibers as flexible and free-standing anodes for high-performance lithium-ion batteries. J Mater Chem A. 2019;7(13):7691. https://doi.org/10.1039/c9ta00275h.

    Article  CAS  Google Scholar 

  42. Li Y, Fu Y, Chen S, Huang Z, Wang L, Song Y. Porous Fe2O3/Fe3O4@carbon octahedron arrayed on three-dimensional graphene foam for lithium-ion battery. Compos Part B-Eng. 2019;171:130. https://doi.org/10.1016/j.compositesb.2019.04.049.

    Article  CAS  Google Scholar 

  43. Liu B, Zhang Q, Jin Z, Zhang L, Li L, Gao Z, Wang C, Xie H, Su Z. Uniform pomegranate-like nanoclusters organized by ultrafine transition metal oxide@nitrogen-doped carbon subunits with enhanced lithium storage properties. Adv Energy Mater. 2018;8(7):1702347. https://doi.org/10.1002/aenm.201702347.

    Article  CAS  Google Scholar 

  44. Yan C, Zhu Y, Li Y, Fang Z, Peng L, Zhou X, Chen G, Yu G. Local built-in electric field enabled in carbon-doped Co3O4 nanocrystals for superior lithium-ion storage. Adv Funct Mater. 2018;28(7):1705951. https://doi.org/10.1002/adfm.201705951.

    Article  CAS  Google Scholar 

  45. Wang S, Li L, Shao Y, Zhang L, Li Y, Wu Y, Hao X. Transition-metal oxynitride: a facile strategy for improving electrochemical capacitor storage. Adv Mater. 2019;31(10):1806088. https://doi.org/10.1002/adma.201806088.

    Article  CAS  Google Scholar 

  46. Alhindawy IG, Elshehy EA, Youssef AO, Abdelwahab SM, Zaher AA, El-Said WA, Mira HI, Abdelkader AM. Improving the photocatalytic performance of cobalt-doped titania nanosheets by induced oxygen vacancies for efficient degradation of organic pollutants. Nano Struct Nano Object. 2022;31:100888. https://doi.org/10.1016/j.nanoso.2022.100888.

    Article  CAS  Google Scholar 

  47. Zheng Y, Zhou T, Zhao X, Pang WK, Gao H, Li S, Zhou Z, Liu H, Guo Z. Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv Mater. 2017;29(26):1700396. https://doi.org/10.1002/adma.201700396.

    Article  CAS  Google Scholar 

  48. Kim C, Jung JW, Yoon KR, Youn DY, Park S, Kim ID. A high-capacity and long-cycle-life lithium-ion battery anode architecture: silver nanoparticle-decorated SnO2/NiO nanotubes. ACS Nano. 2016;10(12):11317. https://doi.org/10.1021/acsnano.6b06512.

    Article  CAS  Google Scholar 

  49. Pei S, Cheng HM. The reduction of graphene oxide. Carbon. 2012;50(9):3210. https://doi.org/10.1016/j.carbon.2011.11.010.

    Article  CAS  Google Scholar 

  50. Huang M, Mi K, Zhang J, Liu H, Yu T, Yuan A, Kong Q, Xiong S. MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J Mater Chem A. 2017;5(1):266. https://doi.org/10.1039/c6ta09030c.

    Article  CAS  Google Scholar 

  51. Kim HS, Cook JB, Lin H, Ko JS, Tolbert SH, Ozolins V, Dunn B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO(3–x). Nat Mater. 2017;16(4):454. https://doi.org/10.1038/nmat4810.

    Article  CAS  Google Scholar 

  52. Lin J, Huang T, Lu M, Lin X, Reddy RCK, Xu X. Modulating electronic structure of metal-organic frameworks derived zinc manganates by oxygen vacancies for superior lithium storage. Chem Eng J. 2022;433:133770. https://doi.org/10.1016/j.cej.2021.133770.

    Article  CAS  Google Scholar 

  53. Zhang J, Jiang H, Zeng Y, Zhang Y, Guo H. Oxygen-defective Co3O4 for pseudo-capacitive lithium storage. J Power Sources. 2019;439:227026. https://doi.org/10.1016/j.jpowsour.2019.227026.

    Article  CAS  Google Scholar 

  54. Shi L, Li D, Yu J, Liu H, Zhao Y, Xin H, Lin Y, Lin C, Li C, Zhu C. Uniform core–shell nanobiscuits of Fe7S8@C for lithium-ion and sodium-ion batteries with excellent performance. J Mater Chem A. 2018;6(17):7967. https://doi.org/10.1039/c8ta00985f.

    Article  CAS  Google Scholar 

  55. Shangguan E, Guo L, Li F, Wang Q, Li J, Li Q, Chang Z, Yuan X-Z. FeS anchored reduced graphene oxide nanosheets as advanced anode material with superior high-rate performance for alkaline secondary batteries. J Power Sourc. 2016;327:187. https://doi.org/10.1016/j.jpowsour.2016.07.031.

    Article  CAS  Google Scholar 

  56. Kang L, Ren H, Xing Z, Zhao Y, Ju Z. Hierarchical porous CoxFe3−xO4 nanocubes obtained by calcining Prussian blue analogues as anodes for lithium-ion batteries. New J Chem. 2020;44(29):12546. https://doi.org/10.1039/d0nj01027h.

    Article  CAS  Google Scholar 

  57. Dai M, Zhao D, Liu H, Zhu X, Wu X, Wang B. Nanohybridization of Ni-Co-S nanosheets with ZnCo2O4 nanowires as supercapacitor electrodes with long cycling stabilities. ACS Appl Energy Mater. 2021;4(3):2637. https://doi.org/10.1021/acsaem.0c03204.

    Article  CAS  Google Scholar 

  58. Niu HJ, Chen YP, Sun RM, Wang AJ, Mei LP, Zhang L, Feng JJ. Prussian blue analogue-derived CoFe nanocrystals wrapped in nitrogen-doped carbon nanocubes for overall water splitting and Zn-air battery. J Power Sourc. 2020;480:229107. https://doi.org/10.1016/j.jpowsour.2020.229107.

    Article  CAS  Google Scholar 

  59. Zhang L, Su Z, Jiang F, Yang L, Qian J, Zhou Y, Li W, Hong M. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale. 2014;6(12):6590. https://doi.org/10.1039/c4nr00348a.

    Article  CAS  Google Scholar 

  60. Liu H, Shi L, Li D, Yu J, Zhang H-M, Ullah S, Yang B, Li C, Zhu C, Xu J. Rational design of hierarchical ZnO@Carbon nanoflower for high performance lithium ion battery anodes. J Power Sourc. 2018;387:64. https://doi.org/10.1016/j.jpowsour.2018.03.047.

    Article  CAS  Google Scholar 

  61. He B, Li G, Chen L, Chen Z, Jing M, Zhou M, Zhou N, Zeng J, Hou Z. A facile N doping strategy to prepare mass-produced pyrrolic N-enriched carbon fibers with enhanced lithium storage properties. Electrochim Acta. 2018;278:106. https://doi.org/10.1016/j.electacta.2018.05.017.

    Article  CAS  Google Scholar 

  62. Meng JH, Zhang XW, Wang HL, Ren XB, Jin CH, Yin ZG, Liu X, Liu H. Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition. Nanoscale. 2015;7(38):16046. https://doi.org/10.1039/c5nr04490a.

    Article  CAS  Google Scholar 

  63. Feng Y, Yu XY, Paik U. Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation. Chem Commun (Camb). 2016;52(37):6269. https://doi.org/10.1039/c6cc02093c.

    Article  CAS  Google Scholar 

  64. Wang Q, Sun J, Wang Q, Zhang DA, Xing L, Xue X. Electrochemical performance of α-MoO3–In2O3 core–shell nanorods as anode materials for lithium-ion batteries. J Mater Chem A. 2015;3(9):5083. https://doi.org/10.1039/c5ta00127g.

    Article  CAS  Google Scholar 

  65. Ma Y, Ma Y, Geiger D, Kaiser U, Zhang H, Kim GT, Diemant T, Behm RJ, Varzi A, Passerini S. ZnO/ZnFe2O4/N-doped C micro-polyhedrons with hierarchical hollow structure as high-performance anodes for lithium-ion batteries. Nano Energy. 2017;42:341. https://doi.org/10.1016/j.nanoen.2017.11.030.

    Article  CAS  Google Scholar 

  66. Wu N, Qiao X, Shen J, Liu G, Sun T, Wu H, Hou H, Liu X, Zhang Y, Ji X. Anatase inverse opal TiO2-x@N-doped C induced the dominant pseudocapacitive effect for durable and fast lithium/sodium storage. Electrochim Acta. 2019;299:540. https://doi.org/10.1016/j.electacta.2019.01.040.

    Article  CAS  Google Scholar 

  67. Su JT, Wu YJ, Huang CL, Chen YA, Cheng HY, Cheng PY, Hsieh CT, Lu SY. Nitrogen-doped carbon nanoboxes as high rate capability and long-life anode materials for high-performance Li-ion capacitors. Chem Eng J. 2020;396:125314. https://doi.org/10.1016/j.cej.20230.125314.

    Article  CAS  Google Scholar 

  68. Kim H, Lee JW, Byun D, Choi W. Correction: coaxial-nanostructured MnFe2O4 nanoparticles on polydopamine-coated MWCNT for anode materials in rechargeable batteries. Nanoscale. 2018;10(43):20468. https://doi.org/10.1039/c8nr90235f.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52274294) and the Fundamental Research Funds for the Central Universities (No. N2124007-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang Yuan or Qiang Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2211 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Yuan, S., Yang, Y. et al. Prussian blue analogues-derived nitrogen-doped carbon-coated FeO/CoO hollow nanocages as a high-performance anode material for Li storage. Rare Met. 42, 4070–4080 (2023). https://doi.org/10.1007/s12598-023-02373-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02373-2

Keywords

Navigation