Skip to main content
Log in

Understanding oxygen vacant hollow structure CeO2@In2O3 heterojunction to promote CO2 reduction

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In order to reduce the impact of greenhouse gases, we have studied a new and efficient photocatalyst to reduce CO2. We recombined the hollow CeO2 with the In2O3 and introduced the oxygen vacancy to obtain the CeO2@In2O3 for the hollow structure of the oxygen vacancy. The test results show that CeO2@In2O3 with oxygen vacancy hollow structure (hereinafter collectively referred to as H-CeO2, H-In2O3, and H-CeO2–x@In2O3–x) have higher photocatalytic reduction activity of CO2 than hollow CeO2 and hollow In2O3. When the illumination time was 4 h, the yields of carbon dioxide reduction to CO and methane were 38.7 and 7.8 μmol·g−1, respectively. Consequently, we explained the photocatalytic reduction mechanism, and carried out the X-ray diffraction (XRD) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis of H-CeO2, H-In2O3, and H-CeO2–x@In2O3–x. This study summarizes some experience for the study of oxygen vacancy hollow structure photocatalyst, and provides some new ideas in the field of photocatalytic reduction of CO2.

Graphical abstract

摘要

为了减少温室气体的影响,我们研究了一种新型高效降低二氧化碳的光催化剂。我们将中空CeO2与In2O3复合,并引入氧空位,得到了氧空位中空结构的CeO2@In2O3异质结。试验结果表明,与中空CeO2和中空In2O3相比,具有氧空位中空结构的CeO2@In2O3异质结(以下统称为H-CeO2、H-In2O3和H-CeO2-x@In2O3-x)具有较高的二氧化碳光催化还原活性。当光照时间为4h时,二氧化碳还原为CO和CH4的产率分别为38.7和7.8 μmol·g-1。因此,我们解释了光催化还原机理,并对H-CeO2、H-In2O3和H-CeO2-x@In2O3-x进行了XRD和in-situ DRIFTS等分析。本研究总结了氧空位中空结构光催化剂的研究经验,并为二氧化碳的光催化还原领域提供了一些新的思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Feng YJ, Duan YY, Zou HJ, Ma JP, Zhou K, Zhou XY. Research status of single atom catalyst in hydrogen production by photocatalytic water splitting. Chin J Rare Met. 2021;45(5):551.

    Google Scholar 

  2. Wang D, Yin FX, Cheng B, Xia Y, Yu JG, Ho WK. Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. Rare Met. 2021;40(9):2369. https://doi.org/10.1007/s12598-021-01731-2.

    Article  CAS  Google Scholar 

  3. Chen LJ, Liu TT, Liu SM, Cai S, Zou XX, Jiang JW, Mei ZY, Zhao GF, Yang XF, Guo H. S vacant CuIn5S8 confined in a few-layer MoSe2 with interlayer-expanded hollow heterostructures boost photocatalytic CO2 reduction. Rare Met. 2022;41(1):144. https://doi.org/10.1007/s12598-021-01809-x.

    Article  CAS  Google Scholar 

  4. Zhang Y, Zhao SM, Su QW, Xu JL. Visible light response ZnO-C3N4 thin film photocatalyst. Rare Met. 2021;40(1):96. https://doi.org/10.1007/s12598-019-01297-0.

    Article  CAS  Google Scholar 

  5. Ren ZH, Zhang X, Gao MX, Pan HG, Liu YF. Research progress in Ti-based catalysts-modified NaAlH4 hydrogen storage materials. Chin J Rare Met. 2021;45(5):569. https://doi.org/10.13373/j.cnki.cjrm.XY20080027

    Article  Google Scholar 

  6. Mu YF, Zhang W, Dong GX, Su K, Zhang M, Lu TB. Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based z-scheme system to significantly enhance photocatalytic CO2 reduction. Small. 2020;16:2002140. https://doi.org/10.1002/smll.202002140.

    Article  CAS  Google Scholar 

  7. Wu LY, Mu YF, Guo XX, Zhang W, Lu TB. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew Chem Int Ed. 2019;58:9491. https://doi.org/10.1002/anie.201904537.

    Article  CAS  Google Scholar 

  8. Mu YF, Zhang W, Guo XX, Dong GX, Zhang M, Lu TB. Water-tolerant lead halide perovskite nanocrystals as efficient photocatalysts for visible-light-driven CO2 reduction in pure water. Chemsuschem. 2019;12:4769. https://doi.org/10.1002/cssc.201902192.

    Article  CAS  Google Scholar 

  9. Hamdy MS, Amrollahi R, Sinev I, Mei B, Mul G. Strategies to design efficient silica-supported photocatalysts for reduction of CO2. J Am Chem Soc. 2014;136:594. https://doi.org/10.1021/ja410363v.

    Article  CAS  Google Scholar 

  10. Xiang Q, Cheng B, Yu J. Graphene-based photocatalysts for solar-fuel generation. ChemInform. 2015;46:11350. https://doi.org/10.1002/anie.201411096.

    Article  CAS  Google Scholar 

  11. Men YL, You Y, Pan YX, Gao H, Xia Y, Cheng DG, Song J, Cui DX, Wu N, Li YT, Xin S, Goodenough JB. Selective CO evolution from photoreduction of CO2 on a metal-carbide-based composite catalyst. J Am Chem Soc. 2018;140:13071. https://doi.org/10.1021/jacs.8b08552.

    Article  CAS  Google Scholar 

  12. Duan SH, Wu SF, Wang L, She HD, Huang JW, Wang QZ. Rod-shaped metal organic framework structured PCN-222 (Cu)/TiO2 composites for efficient photocatalytic CO2 reduction. Acta Phys Chim Sin. 2020;36(3):1905086. https://doi.org/10.3866/PKU.WHXB201905086.

    Article  CAS  Google Scholar 

  13. Zhou W, Guo JK, Shen S, Pan JB, Tang J, Chen L, Au CT, Yin SF. Progress in photoelectrocatalytic reduction of carbon dioxide. Acta Phys Chim Sin. 2020;36(3):1906048. https://doi.org/10.3866/PKU.WHXB201906048.

    Article  CAS  Google Scholar 

  14. Jiang JW, Wang XF, Xu QJ, Mei ZY, Duan LY, Guo H. Understanding dual-vacancy heterojunction for boosting photocatalytic CO2 reduction with highly selective conversion to CH4. Appl Catal B. 2022;316:121679. https://doi.org/10.1016/j.apcatb.2022.121679.

    Article  CAS  Google Scholar 

  15. Liu WW, Pan J, Peng RF. Shape-dependent hydrogen generation performance of PtPd bimetallic co-catalyst coupled with C3N4 photocatalyst. Rare Met. 2021;40(12):3554. https://doi.org/10.1007/s12598-021-01705-4.

    Article  CAS  Google Scholar 

  16. Huang G, Xu ZH, Luo TT, Yan ZX, Zhang M. Fluorescent light enhanced graphitic carbon nitride/ceria with ultralow-content platinum catalyst for oxidative decomposition of formaldehyde at ambient temperature. Rare Met. 2021;40(11):3135. https://doi.org/10.1007/s12598-021-01756-7.

    Article  CAS  Google Scholar 

  17. He YQ, Li CG, Chen XB, Rao H, Shi Z, Feng SH. Critical aspects of metal-organic framework-based materials for solar-driven CO2 reduction into valuable fuels. Global Chall. 2021;5:2000082. https://doi.org/10.1002/gch2.202000082.

    Article  Google Scholar 

  18. Chen F, Ma ZY, Ye LQ, Ma TY, Zhang TR, Zhang YH, Huang HW. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv Mater. 2020;32:1908350. https://doi.org/10.1002/adma.201908350.

    Article  CAS  Google Scholar 

  19. Liu LZ, Huang HW, Chen ZS, Yu HJ, Wang KY, Huang JD, Yu H, Zhang YH. Synergistic polarization engineering on bulk and surface for boosting CO2 photoreduction. Angew Chem Int Ed. 2021;60:18303. https://doi.org/10.1002/anie.202106310.

    Article  CAS  Google Scholar 

  20. Feng X. Converting ceria polyhedral nanoparticles into single-crystal nanospheres. Science. 2006;312:1504. https://doi.org/10.1126/science.1125767.

    Article  CAS  Google Scholar 

  21. Pinna N, Hochepied JF, Niederberger M, Gregg M. Chemistry and physics of metal oxide nanostructures. Phys Chem Chem Phys. 2009;11:3607. https://doi.org/10.1039/b905768d.

    Article  CAS  Google Scholar 

  22. Liu X, Zhou K, Wang L, Wang B, Li Y, Wang BY. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J Am Chem Soc. 2009;131:3140. https://doi.org/10.1021/ja808433d.

    Article  CAS  Google Scholar 

  23. Xie C, Yan D, Li H, Du S, Chen W, Wang Y, Zou Y, Chen R, Wang S. Defect chemistry in heterogeneous catalysis: recognition, understanding and utilization. ACS Catal. 2020;10:11082. https://doi.org/10.1021/acscatal.0c03034.

    Article  CAS  Google Scholar 

  24. Jiang F, Wang S, Liu B, Liu J, Wang L, Xiao Y, Xu Y, Liu X. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts. ACS Catal. 2020;10:11493. https://doi.org/10.1021/acscatal.0c03324.

    Article  CAS  Google Scholar 

  25. Kong J, Xiang Z, Li G, An T. Introduce oxygen vacancies into CeO2 catalyst for enhanced coke resistance during photothermocatalytic oxidation of typical VOCs. Appl Catal B. 2020;269:118755. https://doi.org/10.1016/j.apcatb.2020.118755.

    Article  CAS  Google Scholar 

  26. Lin X, Li S, He H, Wu Z, Wu J, Chen L, Ye D, Fu M. Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation. Appl Catal B. 2018;223:91. https://doi.org/10.1016/j.apcatb.2017.06.071.

    Article  CAS  Google Scholar 

  27. May YA, Wang WW, Yan H, Wei S, Jia CJ. Insights into facet-dependent reactivity of CuO-CeO2 nanocubes and nanorods as catalysts for CO oxidation reaction. Chinese J Catal. 2020;41:1017. https://doi.org/10.1016/s1872-2067(20)63533-1.

    Article  CAS  Google Scholar 

  28. Feng Z, Ren Q, Peng R, Mo S, Zhang M, Fu M, Chen L, Ye D. Effect of CeO2 morphologies on toluene catalytic combustion. Catal Today. 2019;332:177. https://doi.org/10.1016/j.cattod.2018.06.039.

    Article  CAS  Google Scholar 

  29. Wu M, Wang X, Dai Q, Gu Y, Li D. Low temperature catalytic combustion of chlorobenzene over Mn-Ce-O/gamma-Al2O3 mixed oxides catalyst. Catal Today. 2010;158:336. https://doi.org/10.1016/j.cattod.2010.04.006.

    Article  CAS  Google Scholar 

  30. Han ZW, Han YC, Xu S. Preparation of nano-cerium dioxide and its effect on the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2013;116:273. https://doi.org/10.1007/s10973-013-3528-y.

    Article  CAS  Google Scholar 

  31. Zhu C, Wang Y, Jiang Z, Xu F, Xian Q, Sun C, Tong Q, Zou W, Duan X, Wang S. CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption. Appl Catal B. 2019;201(259):64. https://doi.org/10.1016/j.apcatb.2019.118072.

    Article  CAS  Google Scholar 

  32. Pu Y, Luo Y, Wei X, Sun J, Li L, Zou W, Dong L. Synergistic effects of Cu2O-decorated CeO2 on photocatalytic CO2 reduction: surface Lewis acid/base and oxygen defect. Appl Catal B. 2019;254:580. https://doi.org/10.1016/j.apcatb.2019.04.093.

    Article  CAS  Google Scholar 

  33. Wen XJ, Niu CG, Zhang L, Liang C, Zeng GM. A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight. Appl Catal B. 2018;221:701. https://doi.org/10.1016/j.apcatb.2017.09.060.

    Article  CAS  Google Scholar 

  34. Wang Y, Zhao J, Li Y, Wang C. Selective photocatalytic CO2 reduction to CH4 over Pt/In2O3: significant role of hydrogen adatom. Appl Catal B. 2018;226:544. https://doi.org/10.1016/j.apcatb.2018.01.005.

    Article  CAS  Google Scholar 

  35. Laura BH, Thomas EW, Paul GOB, Kristine L, Laura MR, Charles AM, Geoffrey AO. The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and visible light. Adv Sci. 2014;1:1400013. https://doi.org/10.1002/advs.201400013.

    Article  CAS  Google Scholar 

  36. Chaoumead A, Sung YM, Kwak DJ. The effects of RF sputtering power and gas pressure on structural and electrical properties of ITiO thin film. Adv Cond Matter Phys. 2012;2012:1. https://doi.org/10.1155/2012/651587.

    Article  CAS  Google Scholar 

  37. Choi JK, Hwang IS, Kim SJ, Park JS, Park SS, Jeong U, Kang YC, Lee JH. Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sens Actuators B Chem. 2010;B150:191. https://doi.org/10.1016/j.snb.2010.07.013.

    Article  CAS  Google Scholar 

  38. Qi Q, Zhao J, Xuan RF, Wang PP, Feng LL, Zhou LJ, Wang DJ, Li GD. Sensitive ethanol sensors fabricated from p-type La0.7Sr0.3FeO3 nanoparticles and n-type SnO2 nanofibers. Sens Actuators B Chem. 2014;191(659):665. https://doi.org/10.1016/j.snb.2013.10.035.

  39. Xu X, Zhao P, Wang D, Sun P, You P, Sun Y, Liang X, Liu F, Chen H, Lu G. Preparation and gas sensing properties of hierarchical flower-like In2O3 microspheres. Sens Actuators B Chem. 2013;176:405. https://doi.org/10.1016/j.snb.2012.10.091.

    Article  CAS  Google Scholar 

  40. Hou JG, Cao SY, Sun YQ, Wu YZ, Liang F, Lin ZS, Sun LC. Atomically thin mesoporous In2O3-x/In2S3 lateral heterostructures enabling robust broadband-light photo-electrochemical water splitting. Adv Energy Mater. 2017;8:1701114. https://doi.org/10.1002/aenm.201701114.

    Article  CAS  Google Scholar 

  41. Kovačič Ž, Likozar B, Huš M. Photocatalytic CO2 reduction: a review of ab initio mechanism, kinetics, and multiscale modeling simulations. ACS Catal. 2020;10:14984. https://doi.org/10.1021/acscatal.0c02557.

    Article  CAS  Google Scholar 

  42. Tian G, Chen Y, Pan K, Wang D, Zhou W, Ren Z, Fu H. Efficient visible light-induced degradation of phenol on N-doped anatase TiO2 with large surface area and high crystallinity. Appl Surf Sci. 2010;256:3740. https://doi.org/10.1016/j.apsusc.2010.01.016.

    Article  CAS  Google Scholar 

  43. Zhang X, Chen Y, Xiao Y, Zhou W, Tian G, Fu H. Enhanced charge transfer and separation of hierarchical hydrogenated TiO2 nanothorns/carbon nanofibers composites decorated by NiS quantum dots for remarkable photocatalytic H2 production activity. Nanoscale. 2018;10:4041. https://doi.org/10.1039/c7nr09415a.

    Article  CAS  Google Scholar 

  44. Li R, Sun L, Zhan W, Li YA, Wang X, Han X. Engineering an effective noble-metal-free photocatalyst for hydrogen evolution: hollow hexagonal porous micro-rods assembled from In2O3@carbon core-shell nanoparticles. J Mater Chem A. 2018;6:15747. https://doi.org/10.1039/c8ta04916e.

    Article  CAS  Google Scholar 

  45. Wang W, Zeng Z, Zeng G, Zhang C, Xiao R, Zhou C, Xiong W, Yang Y, Lei L, Liu Y, Huang D, Cheng M, Yang Y, Fu Y, Luo H, Zhou Y. Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4 as novel photocatalyst for destruction of escherichia coli and tetracycline degradation under visible light. Chem Eng J. 2019;378:122132. https://doi.org/10.1016/j.cej.2019.122132.

    Article  CAS  Google Scholar 

  46. Li T, Abdelhaleem A, Chu W, Pu S, Qi F, Zou J. S-doped TiO2 photocatalyst for visible LED mediated oxone activation: kinetics and mechanism study for the photocatalytic degradation of pyrimethanil fungicide. Chem Eng J. 2021;411:128450. https://doi.org/10.1016/j.cej.2021.128450.

    Article  CAS  Google Scholar 

  47. Hu Z, Yang C, Lv K, Li X, Li Q, Fan J. Single atomic Au induced dramatic promotion of the photocatalytic activity of TiO2 hollow microspheres. Chem Commun (Camb). 2020;56:1745. https://doi.org/10.1039/C9CC08578E.

    Article  CAS  Google Scholar 

  48. Jiang F, Zhao H, Chen H, Xu C, Chen J. Enhancement of photocatalytic decomposition of perfluorooctanoic acid on CeO2/In2O3. RSC Adv. 2016;6:72015. https://doi.org/10.1039/c6ra09856h.

    Article  CAS  Google Scholar 

  49. Yee A, Morrison SJ, Idriss H. A study of ethanol reactions over Pt/CeO2 by temperature-programmed desorption and in situ FT-IR spectroscopy: evidence of benzene formation. J Catal. 2000;191:30. https://doi.org/10.1006/jcat.1999.2765.

    Article  CAS  Google Scholar 

  50. Villa E, Houk AL, Dick DD, Hunyadi Murph SE. Hyper-Raman spectroscopy of CeO2. J Raman Spectrosc. 2020;51:1260. https://doi.org/10.1002/jrs.5886.

    Article  CAS  Google Scholar 

  51. Kraynis O, Lubomirsky I, Livneh T. Resonant Raman scattering in undoped and lanthanide-doped CeO2. J Phys Chem C. 2019;123:24111. https://doi.org/10.1021/acs.jpcc.9b06918.

    Article  CAS  Google Scholar 

  52. Saadoon SJ, Jarosova M, Machek P, Kadhim MM, Ali MH, Khalaji AD. Methylene blue photodegradation using as-synthesized CeO2 nanoparticles. J Chin Chem Soc. 2022;69:280. https://doi.org/10.1002/jccs.202100476.

    Article  CAS  Google Scholar 

  53. Zhang S, Zheng Y, Song P, Sun J, Wang Q. Enhanced trimethylamine gas-sensing performance of CeO2 nanoparticles-decorated MoO3 nanorods. J Mater Sci-Mater El. 2022;33:3453. https://doi.org/10.1007/s10854-021-07539-1.

    Article  CAS  Google Scholar 

  54. He W, Ran J, Yang G, He Z, Huang X, Crittenden J. Promoting effect of Co-doped CeO2 nanorods activity and SO2 resistance for Hg0 removal. Fuel. 2022;317:123320. https://doi.org/10.1016/j.fuel.2022.123320.

    Article  CAS  Google Scholar 

  55. Chen J, Gu P, Guan Y, Su H. Synthesis of g-C3N4 composite co-doped with CeO2 and sugar cane bagasse charcoal for the degradation of methylene blue under visible light. Colloid Surf A. 2022;641:128551. https://doi.org/10.1016/j.colsurfa.2022.128551.

    Article  CAS  Google Scholar 

  56. Sharma PK, Pandey OP. Synthesis and catalytic study of CeO2 heterostructures with (Zn0.003xCdx)S0.003 for the removal of crystal violet dye. Physica B. 2022. https://doi.org/10.1016/j.physb.2022.413702.

    Article  Google Scholar 

  57. Rana A, Hasan I, Koo BH, Khan RA. Green synthesized CeO2 nanowires immobilized with alginate-ascorbic acid biopolymer for advance oxidative degradation of crystal violet. Colloid Surf A. 2022;637:128225. https://doi.org/10.1016/j.colsurfa.2021.128225.

    Article  CAS  Google Scholar 

  58. Yulizar Y, Kusrini E, Apriandanu DOB, Nurdini N, Datura metel L. Leaves extract mediated CeO2 nanoparticles: synthesis, characterizations, and degradation activity of DPPH radical. Surf Interfaces. 2020;1(19):100437.

    Article  Google Scholar 

  59. Deng Y, Shi X, Wei L, Liu H, Li J, Ou X, Dong L, Li B. Effect of intergrowth and coexistence CuO-CeO2 catalyst by grinding method application in the catalytic reduction of NOx by CO. J Alloys Compd. 2021;869:159231. https://doi.org/10.1016/j.jallcom.2021.159231.

    Article  CAS  Google Scholar 

  60. Ahasan MR, Wang Y, Wang R. In situ DRIFTS and CO-TPD studies of CeO2 and SiO2 supported CuOx catalysts for CO oxidation. Mol Catal. 2022;518:112085. https://doi.org/10.1016/j.mcat.2021.112085.

    Article  CAS  Google Scholar 

  61. Wang M, Shen M, Jin X, Tian J, Zhou Y, Shao Y, Zhang L, Li Y, Shi J. Mild generation of surface oxygen vacancies on CeO2 for improved CO2 photoreduction activity. Nanoscale. 2020;12:12374. https://doi.org/10.1039/d0nr00717j.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52064049), the Key National Natural Science Foundation of Yunnan Province (Nos. 2018FA028 and 2019FY003023), the International Joint Research Center for Advanced Energy Materials of Yunnan Province (No. 202003AE140001), the Key Laboratory of Solid State Ions for Green Energy of Yunnan University (2019) and the Analysis and Measurements Center of Yunnan University for the Sample Testing Service.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-Yan Duan or Hong Guo.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4271 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, QJ., Jiang, JW., Wang, XF. et al. Understanding oxygen vacant hollow structure CeO2@In2O3 heterojunction to promote CO2 reduction. Rare Met. 42, 1888–1898 (2023). https://doi.org/10.1007/s12598-022-02244-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02244-2

Keywords

Navigation