Skip to main content
Log in

High-performance SiO/C as anode materials for lithium-ion batteries using commercial SiO and glucose as raw materials

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Silicon monoxide (SiO) is considered as a promising anode material for lithium-ion batteries (LIBs) due to its higher capacity and longer cycle life than those of graphite and silicon, respectively. In this study, glucose was developed as a suitable and inexpensive carbon source to synthesize SiO/C composite with a high performance. In addition, the effects of the calcination temperature and the amount of carbon source on the electrochemical performance of the SiO/C composite were investigated. The addition of 5 wt% glucose and a calcination temperature of 800 °C demonstrated the optimum conditions for SiO/C synthesis. The resultant SiO/C showed an initial charge capacity of 1259 mAh·g−1 and a high initial coulombic efficiency of 71.9%. A charge capacity of 850 mAh·g−1 after 100 cycles at 200 mA·g−1 was achieved, demonstrating the best value of the SiO/C-based materials. The composition changes of SiO under the calcination temperature played a significant role in the electrochemical performance. Overall, the obtained SiO/C material with a high capacity and good stability is suitable for LIB applications as an anode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arico AS, Bruce P, Scrosati B. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4(5):366.

    Article  CAS  Google Scholar 

  2. Armand M, Tarascon J. Building better batteries. Nature. 2008;451(7179):652.

    Article  CAS  Google Scholar 

  3. An Y, Chen S, Zou M, Geng LB, Sun XZ, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met. 2019;38(12):1113.

    Article  CAS  Google Scholar 

  4. Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.

    Article  CAS  Google Scholar 

  5. Sato K, Noguchi M, Demachi A, Oki N, Endo M. A mechanism of lithium storage in disordered carbons. Science. 1994;264(22):556.

    Article  CAS  Google Scholar 

  6. Wu SJ, Wu ZH, Fang S, Qi XP, Yu B, Yang JY. A comparison of core–shell Si/C and embedded structure Si/C composites as negative materials for lithium-ion batteries. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01354-8.

    Article  Google Scholar 

  7. Deshpande R, Chen YT, Verbrugge MW. Modeling diffusion-induced stress in nanowire electrode structures. J Power Sources. 2010;195(15):5081.

    Article  CAS  Google Scholar 

  8. Obrovac MN, Christensen L. Structural changes in silicon anodes during lithium insertion/extraction. Solid State Lett. 2004;7(5):A93.

    Article  CAS  Google Scholar 

  9. Obrovac MN, Christensen L Le, Dahn JR. Alloy design for lithium-ion battery anodes. J Electrochem Soc. 2007;154(9):A849.

    Article  CAS  Google Scholar 

  10. Aurbach D. Review of selected electrode-solution interactions which determine the performance of Li and Li-Ion batteries. J Power Sources. 2000;89(2):206.

    Article  CAS  Google Scholar 

  11. Chan CK, Ruffo R, Hong SS, Cui Y. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J Power Sources. 2009;189(2):1132.

    Article  CAS  Google Scholar 

  12. Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.

    Article  CAS  Google Scholar 

  13. Zhang T, Gao J, Zhang HP, Yang LC. Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries. Electrochem Commun. 2007;9(5):886.

    Article  CAS  Google Scholar 

  14. Jeong G, Kim JH, Kim YU, Kim YJ. Multifunctional TiO2 coating for a SiO anode in Li-ion batteries. J Mater Chem. 2012;22(16):7999.

    Article  CAS  Google Scholar 

  15. Schulmeister K, Mader W. TEM investigation on the structure of amorphous silicon monoxide. J Non-Cryst Solids. 2003;320(1–3):143.

    Article  CAS  Google Scholar 

  16. Miyachi M, Yamamoto H, Kawai H, Ohta T, Shirakata M. Analysis of SiO anodes for lithium-ion batteries. J Electrochem Soc. 2005;152(10):A2089.

    Article  CAS  Google Scholar 

  17. Hwa B, Kim JH, Sohn HJ. A new approach to synthesis of porous SiOx anode for Li-ion batteries via chemical etching of Si crystallites. Electrochim Acta. 2014;117(20):426.

    Google Scholar 

  18. Yamamura H, Nakanishi S. Reduction effect of irreversible capacity on SiO anode material heat-reacted with Fe2O3. J Power Sources. 2013;232(15):264.

    Article  CAS  Google Scholar 

  19. Kim JH, Park CM, Kim H. Electrochemical behavior of SiO anode for Li secondary batteries. J Electroanal Chem. 2011;661(1):245.

    Article  CAS  Google Scholar 

  20. Si Q, Hanai K, Ichikawa T, Phillippa MB, Hirano A, Imanishi N, Yamamoto O, Takeda Y. Improvement of cyclic behavior of a ball-milled SiO and carbon nanofiber composite anode for lithium-ion batteries. J Power Sources. 2011;196(22):9774.

    Article  CAS  Google Scholar 

  21. Kim JH, Sohn HJ, Kim H, Jeong G, Choi W. Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries. J Power Sources. 2007;170(2):456.

    Article  CAS  Google Scholar 

  22. Hwa Y, Park CM, Sohn HJ. Modified SiO as a high performance anode for Li-ion batteries. J Power Sources. 2013;222:129.

    Article  CAS  Google Scholar 

  23. Guo C, Wang D, Wang Q, Wang B, Liu T. A SiO/graphene nanocomposite as a high stability anode material for lithium-ion batteries. Int J Electrochem Sci. 2012;7(9):8745.

    CAS  Google Scholar 

  24. Nguyen DT, Nguyen CC, Kim JS, Kim JY, Song SW. Facile synthesis and high anode performance of carbon fiber-interwoven amorphous nano-SiOx/graphene for rechargeable lithium batteries. ACS Appl Mater Inter. 2013;5(21):11234.

    Article  CAS  Google Scholar 

  25. Yuan X, Xin H, Qin X, Li X. Self-assembly of SiO/reduced graphene oxide composite as high-performance anode materials for Li-ion batteries. Electrochim Acta. 2015;155:251.

    Article  CAS  Google Scholar 

  26. Chen Z, Qin Y, Amine K. Sun YK Role of Surface coating on cathode materials for lithium-ion batteries. Mater Chem. 2010;20(36):7606.

    Article  CAS  Google Scholar 

  27. Liu WR, Yen YC, Wu HC, Martin W. Nano-porous SiO/carbon composite anode for lithium-ion batteries. J Appl Electrochem. 2009;39(9):1643.

    Article  CAS  Google Scholar 

  28. Lu ZW, Xing LZ, Liu J. Microstructure and electrochemical performance of Si–SiO2–C composites as the negative material for Li-ion batteries. J Power Sources. 2010;195(13):4304.

    Article  CAS  Google Scholar 

  29. Wu WJ, Shi J, Liang YH, Liu F, Peng Y, Yang HB. A low-cost and advanced SiOx–C composite with hierarchical structure as an anode material for lithium-ion batteries. Phys Chem Chem Phys. 2015;17(20):13451.

    Article  CAS  Google Scholar 

  30. Wang J, Zhao HL, He JC, Wang CM, Wang J. Nano-sized SiOx/C composite anode for lithium ion batteries. J Power Sources. 2011;196(10):4811.

    Article  CAS  Google Scholar 

  31. Guo H, Mao R, Yang XJ, Chen J. Hollow nanotubular SiOx templated by cellulose fibers for lithium ion batteries. Electrochim Acta. 2012;74:271.

    Article  CAS  Google Scholar 

  32. Lv PP, Zhao HL, Gao CH, Zhang TH, Liu X. Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries. Electrochim Acta. 2015;152:345.

    Article  CAS  Google Scholar 

  33. Lv PP, Zhao HL, Gao CH, Zhang TH, Liu X. SiOx–C dual-phase glass for lithium ion battery anode with high capacity and stable cycling performance. J Power Sources. 2015;274:542.

    Article  CAS  Google Scholar 

  34. Yang J, Takeda Y, Imanishi N, Capiglia C, Xie JY, Yamamoto O. SiOx based anodes for secondary lithium batteries. Solid State Ionics. 2002;152:125.

    Article  Google Scholar 

  35. Wang J, Yang J, Tang Y, Liu J, Zhang Y, Liang G. Size-dependent surface phase change of lithium iron phosphate during carbon coating. Nat Commun. 2014;5:4415.

    Article  Google Scholar 

  36. Morita T, Takami N. Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries. J Electrochem Soc. 2006;153(2):A425.

    Article  CAS  Google Scholar 

  37. Wang N, Tang Y, Zhang Y, Lee C. Si nanowires grown from silicon oxide. Chem Phys Lett. 1999;299(2):237.

    Article  CAS  Google Scholar 

  38. Wang J, Zhou M, Tan G, Chen S, Wu F, Lu J, Amine K. Encapsulating micronano Si/SiOx into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries. Nanoscale. 2015;7(17):8023.

    Article  CAS  Google Scholar 

  39. Xia M, Zhou Z, Su YF, Li YR, Wu YF, Zhang HB. Scalable synthesis SiO@C anode by fluidization thermal chemical vapor deposition in fluidized bed reactor for high-energy lithium-ion battery. Appl Surf Sci. 2019;467:298.

    Article  Google Scholar 

  40. Gnanaraj JS, Levi M, Levi E, Salitra G, Aurbach D, Fischer JE. Comparison between the electrochemical behavior of disordered carbons and graphite electrodes in connection with their structure. J Electrochem Soc. 2001;148(6):A525.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a Fund Project from Education Department of Jiangxi Province (No.KJLD14008) and the Special Fund Project for Graduate Innovation of Nanchang University (No.CX2017005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, ZL., Ji, SB., Liu, LK. et al. High-performance SiO/C as anode materials for lithium-ion batteries using commercial SiO and glucose as raw materials. Rare Met. 40, 1110–1117 (2021). https://doi.org/10.1007/s12598-020-01445-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01445-x

Keywords

Navigation