Skip to main content
Log in

A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, a scalable and cost-effective method including mechanical milling, centrifugation and spray drying was developed to fabricate Si nanoparticles. The synthesized Si nanoparticles show an average size of 62 nm and exhibit a narrow particle size distribution. The influence of particle sizes on electrochemical performance of Si-based electrode was investigated, and it is found that as the particle size decreases in the studied range, the Si particles show a lower specific capacity and a higher irreversible capacity loss (ICL). Furthermore, an oxide layer with thickness of ~3 nm was detected on the surface of the as-received Si nanoparticles, and this layer can be effectively removed by hydrofluoric acid (HF) etching, resulting in much improved electrochemical performance over the as-received samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.

    Article  Google Scholar 

  2. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22(3):587.

    Article  Google Scholar 

  3. Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2016;. doi:10.1007/s12598-016-0753-0.

    Google Scholar 

  4. McDowell MT, Lee SW, Nix WD, Cui Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater. 2013;25(36):4966.

    Article  Google Scholar 

  5. Kim H, Seo M, Park MH, Cho J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed. 2010;49(12):2146.

    Article  Google Scholar 

  6. Li H, Huang X, Chen L, Wu Z, Liang Y. A high capacity nano-Si Composite anode material for lithium rechargeable batteries. Electrochem Solid State Lett. 1999;2(11):547.

    Article  Google Scholar 

  7. Fang S, Wang H, Yang JY, Lu SG, Yu B, Wang JT, Zhao CR. Electrochemical preparation of silicon nanowires from porous Ni/SiO2 blocks in molten CaCl2. Rare Met. 2016;. doi:10.1007/s12598-016-0742-3.

    Google Scholar 

  8. Zhang C, Gu L, Kaskhedikar N, Cui G, Maier J. Preparation of silicon@silicon oxide core–shell nanowires from a silica precursor toward a high energy density Li-ion battery anode. ACS Appl Mater Interfaces. 2013;5(23):12340.

    Article  Google Scholar 

  9. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat Nanotechnol. 2012;7(5):310.

    Article  Google Scholar 

  10. Wen Z, Lu G, Mao S, Kim H, Cui S, Yu K, Huang X, Hurley PT, Mao O, Chen J. Silicon nanotube anode for lithium-ion batteries. Electrochem Commun. 2013;29:67.

    Article  Google Scholar 

  11. Xing A, Tian S, Tang H, Losic D, Bao Z. Mesoporous silicon engineered by the reduction of biosilica from rice husk as a high-performance anode for lithium-ion batteries. RSC Adv. 2013;3(26):10145.

    Article  Google Scholar 

  12. Ge M, Rong J, Fang X, Zhang A, Lu Y, Zhou C. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013;6(3):174.

    Article  Google Scholar 

  13. Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano. 2012;6(2):1522.

    Article  Google Scholar 

  14. Su L, Jing Y, Zhou Z. Li ion battery materials with core–shell nanostructures. Nanoscale. 2011;3(10):3967.

    Article  Google Scholar 

  15. Su L, Xie J, Xu Y, Wang L, Wang Y, Ren M. Effect of pore lengths on the reduction degree and lithium storage performance of mesoporous SiOx nanomaterials. J Alloys Compd. 2016;663:524.

    Article  Google Scholar 

  16. Su L, Zhou Z, Ren M. Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries. Chem Commun. 2010;46(15):2590.

    Article  Google Scholar 

  17. Zhang P, Wang L, Xie J, Su L, Ma C. Micro/nano-complex-structure SiOx–PANI–Ag composites with homogeneously-embedded Si nanocrystals and nanopores as high-performance anodes for lithium ion batteries. J Mater Chem A. 2014;2(11):3776.

    Article  Google Scholar 

  18. Youn WK, Kim CS, Hwang NM. Effect of the carrier gas flow rate on the microstructure evolution and the generation of the charged nanoparticles during silicon chemical vapor deposition. J Nanosci Nanotechnol. 2013;13(10):7127.

    Article  Google Scholar 

  19. Zacharias M, Heitmann J, Scholz R, Kahler U, Schmidt M, Bläsing J. Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach. Appl Phys Lett. 2002;80(4):661.

    Article  Google Scholar 

  20. Intartaglia R, Bagga K, Brandi F. Study on the productivity of silicon nanoparticles by picosecond laser ablation in water: towards gram per hour yield. Opt Express. 2014;22(3):3117.

    Article  Google Scholar 

  21. Won CW, Nersisyan HH, Won HI, Lee HH. Synthesis of nanosized silicon particles by a rapid metathesis reaction. J Solid State Chem. 2009;182(11):3201.

    Article  Google Scholar 

  22. Lin N, Han Y, Wang L, Zhou J, Zhou J, Zhu Y, Qian Y. Preparation of nanocrystalline silicon from SiCl4 at 200 °C in molten salt for high-performance anodes for lithium ion batteries. Angew Chem Int Ed. 2015;54(12):3822.

    Article  Google Scholar 

  23. Wang L, Gao B, Peng C, Peng X, Fu J, Chu PK, Huo K. Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes. Nanoscale. 2015;7(33):13840.

    Article  Google Scholar 

  24. Kwon Y, Park GS, Cho J. Synthesis and electrochemical properties of lithium-electroactive surface-stabilized silicon quantum dots. Electrochim Acta. 2007;52(14):4663.

    Article  Google Scholar 

  25. Epur R, Minardi L, Datta MK, Chung SJ, Kumta PN. A simple facile approach to large scale synthesis of high specific surface area silicon nanoparticles. J Solid State Chem. 2013;208:93.

    Article  Google Scholar 

  26. Knieke C, Sommer M, Peukert W. Identifying the apparent and true grinding limit. Powder Technol. 2009;195(1):25.

    Article  Google Scholar 

  27. Cho H, Waters MA, Hogg R. Investigation of the grind limit in stirred-media milling. Int J Miner Process. 1996;44–45:607.

    Article  Google Scholar 

  28. Stenger F, Mende S, Schwedes J, Peukert W. The influence of suspension properties on the grinding behavior of alumina particles in the submicron size range in stirred media mills. Powder Technol. 2005;156(2):103.

    Article  Google Scholar 

  29. Khalilov U, Pourtois G, Huygh S, van Duin ACT, Neyts EC, Bogaerts A. New mechanism for oxidation of native silicon oxide. J Phys Chem C. 2013;117(19):9819.

    Article  Google Scholar 

  30. Liu XH, Fan F, Yang H, Zhang S, Huang JY, Zhu T. Self-limiting lithiation in silicon nanowires. ACS Nano. 2013;7(2):1495.

    Article  Google Scholar 

  31. He Y, Piper DM, Gu M, Travis JJ, George SM, Lee SH, Genc A, Pullan L, Liu J, Mao SX, Zhang JG, Ban C, Wang C. In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries. ACS Nano. 2014;8(11):11816.

    Article  Google Scholar 

  32. Chen X, Li X, Ding F, Xu W, Xiao J, Cao Y, Meduri P, Liu J, Graff GL, Zhang J. Conductive rigid skeleton supported silicon as high-performance Li-ion battery anodes. Nano Lett. 2012;12(8):4124.

    Article  Google Scholar 

  33. Obrovac MN, Krause LJ. Reversible cycling of crystalline silicon powder. J Electrochem Soc. 2007;154(2):A103.

    Article  Google Scholar 

  34. Chang WS, Park CM, Kim JH, Kim YU, Jeong G, Sohn HJ. Quartz (SiO2): a new energy storage anode material for Li-ion batteries. Energy Environ Sci. 2012;5(5):6895.

    Article  Google Scholar 

  35. Xun S, Song X, Wang L, Grass ME, Liu Z, Battaglia VS, Liu G. The Effects of native oxide surface layer on the electrochemical performance of Si nanoparticle-based electrodes. J Electrochem Soc. 2011;158(12):A1260.

    Article  Google Scholar 

  36. Sun Q, Zhang B, Fu ZW. Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries. Appl Surf Sci. 2008;254(13):3774.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51404030), the National Key Technologies Research and Development Program (No. 2016YFB0100400), the Natural Science Foundation of Beijing Municipality (No. 3154043), the Beijing Science and Technology Plan (No. Z151100000115015) and the Beijing Nova Program (No. Z161100004916096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Gang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, JY., Wang, JT. et al. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 38, 199–205 (2019). https://doi.org/10.1007/s12598-017-0936-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0936-3

Keywords

Navigation