Skip to main content
Log in

Structural properties and crystal orientation of polycrystalline Gd films

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To get a systematic understanding about dependence of deposition conditions on properties of Gd films, a series of Gd films were prepared under different Ar gas pressures: 0.5, 0.7, 1.0, and 1.5 Pa, and another series of Gd films were prepared under different substrate temperatures: 25, 100, 200, 350, and 500 °C. The effects of the deposition time, Ar pressure, and substrate temperature on microstructures and crystal orientation were investigated by grazing-incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). The experimental results show that low Ar pressure and plenty deposition time will contribute to the formation of Gd hcp phase, which has better magnetic properties such as higher Curie temperature and bigger magnetic moment, and high substrate temperature can diminish the inner stress in Gd films and promote lattice parameters closer to those of the ideal Gd hcp-structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rojas-Ayala C, Passamani EC, Suguihiro NM, Litterst FJ, Baggio Saitovitch E. Structural properties of pure and Fe-doped Yb films prepared by vapor condensation. Mater Charact. 2014;96:108.

    Article  CAS  Google Scholar 

  2. Dong JC, Han DD, Zhao FL, ZHAO NN, Wu J, Liu LF, Kang JF, Wang Y. Semiconductor performance of rare earth gadolinium-doped aluminum–zinc oxide thin film. Rare Met. 2016;35(9):672.

    Article  CAS  Google Scholar 

  3. Yi JH. Development of samarium–cobalt rare earth permanent magnetic materials. Rare Met. 2014;33(6):633.

    Article  CAS  Google Scholar 

  4. Wu Q, Zhang PY, Pan MX, Li DY, Ge HL. Crystallization kinetics and magnetization behavior of RE3.5Fe66.5Co10B20 (RE = Pr, Nd) nanocomposite ribbons. Rare Met. 2014;33(6):681.

    Article  CAS  Google Scholar 

  5. Luo Y, Yu DB, Li HW, Zhuang WD, Li KS, Lv BB. Phase and microstructure of TbCu7-type SmFe melt-spun powders. J Rare Earth. 2013;31(4):381.

    Article  CAS  Google Scholar 

  6. Liu YC, Li HW, Li KS, Yu DB, Jin JL, Luo Y, Sun L, Quan NT. Magnetic properties optimization of nanocomposite Nd9Fe85B6 magnets by controlling microstructure of as-quenched ribbons. Rare Met. 2014;33(3):299.

    Article  CAS  Google Scholar 

  7. Yang PY, Song C, Zeng F, Pan F. Structural transition and magnetic properties of evaporated Fe/Gd multilayers. Rare Met. 2008;27(5):484.

    Article  CAS  Google Scholar 

  8. Scheunert G, Hendren WR, Ward C, Bowman RM. Magnetization of 2.6 T in gadolinium thin films. Appl Phys Lett. 2012;101(14):142407.

    Article  Google Scholar 

  9. Ward C, Scheunert G, Hendren WR, Hardeman R, Gubbins MA, Bowman RM. Realizing a high magnetic moment in Gd/Cr/FeCo: the role of the rare earth. Appl Phys Lett. 2013;102(9):092403.

    Article  Google Scholar 

  10. Scheunert G, Ward C, Hendren WR, Lapicki AA, Hardeman R, Mooney M, Gubbins MA, Bowman RM. Influence of strain and polycrystalline ordering on magnetic properties of high moment rare earth metals and alloys. J Phys D Appl Phys. 2014;47(41):415005.

    Article  Google Scholar 

  11. Errandonea D, Boehler R, Schwager B, Mezouar M. Structural studies of gadolinium at high pressure and temperature. Phys Rev B. 2007;75(1):014103.

    Article  Google Scholar 

  12. Sarvestani NK, Yazdani A, Ketabi SA. The effect of pressure-induced structural transition on exchange interaction function and electronic structure in Gd-element. Phys Chem Chem Phys. 2014;16(45):25191.

    Article  Google Scholar 

  13. Yin ZP, Pickett WE. Stability of the Gd magnetic moment to the 500 GPa regime: an LDA + U correlated band method study. Phys Rev B. 2006;74(20):205106.

    Article  Google Scholar 

  14. Aspelmeier A, Gerhardter F, Baberschke K. Magnetism and structure of ultrathin Gd films. J Magn Magn Mater. 1994;132(1–3):22.

    Article  CAS  Google Scholar 

  15. Tober ED, Ynzunza RX, Westphal C, Fadley CS. Relationship between morphology and magnetic behavior for Gd thin films on W (110). Phys Rev B. 1996;53(9):5444.

    Article  CAS  Google Scholar 

  16. Gajdzik M, Paschen U, Sürgers C, von Lo¨hneysen H. Magnetooptic measurements on ultrathin Gd films on Y. Zeitschrift für Phy B Condens Matter. 1995;98(4):541.

    Article  CAS  Google Scholar 

  17. Yakovkin IN, Waldfried C, Komesu T, Dowben PA. Variations of the wave vector dependent band gaps with structural transformations of Gd thin film. Phys Lett A. 2002;304(1):43.

    Article  CAS  Google Scholar 

  18. Waldfried C, McIlroy DN, Li D, Pearson J, Bader SD, Dowben PA. Dissociative nitrogen chemisorption and bonding on Gd (0001). Surf Sci. 1995;341(3):L1072.

    Article  CAS  Google Scholar 

  19. Li D, Pearson J, Bader SD, McIlroy DN, Waldfried C, Dowben PA. Spin-polarized photoemission studies of the exchange splitting of the Gd 5d electrons near the Curie temperature. Phys Rev B. 1995;51(19):13895.

    Article  CAS  Google Scholar 

  20. Komesu T, Waldfried C, Dowben PA. The origin of enhanced magnetization in strained gadolinium. Phys Lett A. 1999;256(1):81.

    Article  CAS  Google Scholar 

  21. Waldfried C, Dowben PA, Zeybek O, Bertrams T, Barrett SD. Structural domain growth of strained gadolinium on Mo (112). Thin Solid Films. 1999;338(1):1.

    Article  CAS  Google Scholar 

  22. Face DW, Prober DE. Nucleation of body-centered-cubic tantalum films with a thin niobium underlayer. J Vac Sci Technol A. 1987;5(6):3408.

    Article  CAS  Google Scholar 

  23. Schauer A, Roschy M. RF sputtered β-tantalum and bcc tantalum films. Thin Solid Films. 1972;12(2):313.

    Article  CAS  Google Scholar 

  24. Molarius JMT, Suni I, Laurila T, Zeng K, Kivilahti JK. RF-sputtered tantalum-based diffusion barriers between copper and silicon. Superficies Y Vacío. 1999;9(20):6.

    Google Scholar 

  25. Scheunert G, Hendren WR, Lapicki AA, Jesudoss P, Hardeman R, Gubbins M, Bowman RM. Improved magnetization in sputtered dysprosium thin films. J Phys D Appl Phys. 2013;46(15):152001.

    Article  Google Scholar 

  26. Scheunert G, Heinonen O, Hardeman R, Lapicki A, Gubbins M, Bowman RM. A review of high magnetic moment thin films for microscale and nanotechnology applications. Appl Phys Rev. 2016;3(1):011301.

    Article  Google Scholar 

  27. Scheunert G, Ambrose TF, Hendren WR, Lapicki AA, Egan P, Hardeman R, Gubbins MA, Bowman RM. Ferromagnetism in DyRh and DyRhX (X = Fe, Ni Co, Gd) thin films. J Phys D Appl Phys. 2014;47(48):485002.

    Article  Google Scholar 

  28. Chizhov PE, Kostigov AN, Petinov VI. Structure and magnetic properties of rare earth small particles. Solid State Commun. 1982;42(4):323.

    Article  CAS  Google Scholar 

  29. Curzon AE, Chlebek HG. The observation of face centred cubic Gd, Tb, Dy, Ho, Er and Tm in the form of thin films and their oxidation. J Phys F Met Phys. 1973;3(1):1.

    Article  CAS  Google Scholar 

  30. Hsu CJ, Prikhodko SV, Wang CY, Chen LJ, Carman GP. Magnetic anisotropy in nanostructured gadolinium. J Appl Phys. 2012;111(5):053916.

    Article  Google Scholar 

  31. Olson GB, Cohen M. A general mechanism of martensitic nucleation: part I. General concepts and the FCC → HCP transformation. Metall Trans A. 1976;7(12):1897.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 5150010868).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Rong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YZ., Zhang, SR., Yu, DB. et al. Structural properties and crystal orientation of polycrystalline Gd films. Rare Met. 42, 1414–1419 (2023). https://doi.org/10.1007/s12598-016-0870-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0870-9

Keywords

Navigation