Skip to main content
Log in

Crystallization kinetics and magnetization behavior of RE3.5Fe66.5Co10B20 (RE = Pr, Nd) nanocomposite ribbons

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The influence of hard magnetic phase on the crystallization kinetics and magnetization behavior in nanocomposite RE3.5Fe66.5Co10B20 (RE = Pr, Nd) ribbons prepared by melt-spinning was studied. Differential scanning calorimeter (DSC) measurement of the as-cast melt-spun amorphous ribbons during the crystallization process shows that precipitation energy of Pr2Fe14B phase is higher than that for Nd2Fe14B phase, confirmed by X-ray diffraction (XRD) patterns. It can be explained by the different radii of Pr and Nd atoms. Scanning electron microscopy (SEM) images indicate that the average grain size in Pr3.5Fe66.5Co10B20 ribbon is smaller than that in Nd3.5Fe66.5Co10B20, resulting in an enhancement of exchange coupling between hard and soft phases. It is responsible for the better hard magnetic properties in Pr3.5Fe66.5Co10B20. In addition, the process of magnetization reversal of nanocomposite RE3.5Fe66.5Co10B20 (RE = Pr, Nd) ribbons was discussed in detail by the recoil loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Feng WC, Gao RW, Yan SS, Li W, Zhu MG. Effects of phase distribution and grain size on the effective anisotropy and coercivity of nanocomposite Nd2Fe14B/α-Fe magnets. J Appl Phys. 2005;98(4):044305.

    Article  Google Scholar 

  2. Kneller EF, Hawig R. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans Magn. 1991;27(4):3588.

    Article  Google Scholar 

  3. Chen ZA, Sui YL, Guo ZM. Magnetic properties of Nd2Fe14B/α-Fe nanocomposite magnets with yttrium addition. Rare Met. 2010;29(3):265.

    Article  Google Scholar 

  4. Schrefl T, Kronmüller H, Fidler J. Remanence and coercivity in isotropic nanocrystalline permanent magnets. J Phys Rev B. 1994;49(9):6100.

    Article  Google Scholar 

  5. Skomski R, Coey JMD. Giant energy product in nanostructured two-phase magnets. Phys Rev B. 1993;48(21):15812.

    Article  Google Scholar 

  6. Pawlik P, Davies HA, Kaszuwara W, Wyslocki JJ. PrFeCoB-based magnets derived from bulk alloy glass. J Magn Magn Mater. 2005;290–291(P2):1243.

    Article  Google Scholar 

  7. Marinescu M, Chiriac H, Grigoras M. Magnetic properties of bulk nanocomposite permanent magnets based on NdDyFeB alloys with additions. J Magn Magn Mater. 2005;290-291(P2):1267.

    Article  Google Scholar 

  8. Pawlik P, Davies HA. Glass formability of Fe–Co–Pr–Dy–Zr–B alloys and magnetic properties following devitrification. Scr Mater. 2003;49(8):755.

    Article  Google Scholar 

  9. Long Y, Zhang W, Wang X, Inoue A. Effects of transition metal substitution on the glass-formation ability and magnetic properties of Fe62Co9.5Nd3Dy0.5B25 glassy alloy. J Appl Phys. 2002;91(8):5227.

    Article  Google Scholar 

  10. Pawlik P, Davies HA, Gibbs MRJ. Magnetic properties and glass formability of Fe61Co10Zr5W4B20 bulk metallic glassy alloy. Appl Phys Lett. 2003;83(14):2775.

    Article  Google Scholar 

  11. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702.

    Article  Google Scholar 

  12. Herbst JF. R2Fe14B materials: intrinsic properties and technological aspects. Rev Mod Phys. 1991;63(4):819.

    Article  Google Scholar 

  13. Sagawa M, Fujimori S, Togawa M, Matsuura Y. New material for permanent magnets on a base of Nd and Fe. J Appl Phys. 1984;55(6):2083.

    Article  Google Scholar 

  14. Wohlfarth EP. Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles. J Appl Phys. 1958;29(3):595.

    Article  Google Scholar 

  15. Zhang HW, Rong CB, Du XB, Zhang J, Zhang SY, Shen BG. Investigation on intergrain exchange coupling of nanocrystalline permanent magnets by Henkel plot. Appl Phys Lett. 2003;82(23):4098.

    Article  Google Scholar 

  16. Kelly PE, Grady KO, Mayo PI, Chantrell RW. Switching mechanisms in cobalt–phosphorus thin films. IEEE Trans Magn. 1989;25(5):3881.

    Article  Google Scholar 

  17. Lyubina J, Müller KH, Wolf M, Hannemann U. A two-particle exchange interaction model. J Magn Magn Mater. 2010;322:2948.

    Article  Google Scholar 

  18. Cui BZ, Sun XK, Liu W, Zhang ZD, Geng DY, Zhao XG. Effects of additional elements on the structure and magnetic properties of Nd2Fe14B/a-Fe-type nanocomposite magnets. J Phys D Appl Phys. 2000;33(4):338.

    Article  Google Scholar 

  19. Yan A, Bollero A, Gutfleisch O, Kronmuller H. Microstructure and magnetic properties of two-phase exchange-coupled SmCo5/Sm2(Co, M)17 (M = Fe, Zr, Cu) nanocomposites. J Phys D Appl Phys. 2002;35(9):835.

    Article  Google Scholar 

  20. Bollero A, Yan A, Gutfleisch O, Kronmuller H, Schultz L. Intergrain interactions in nanocrystalline isotropic PrFeB-based magnets. IEEE Trans Magn. 2003;39(5):2944.

    Article  Google Scholar 

  21. Goll D, Seeger M, Kronmuller H. Magnetic and microstructural properties of nanocrystalline exchange coupled PrFeB permanent magnets. J Magn Magn Mater. 1998;185(1):49.

    Article  Google Scholar 

  22. Zhang SY, Zhang HW, Shen BG. Investigation of magnetization reversal in Sm–Fe–Cu(Zr)–Ga–C nanocomposite magnets. J Appl Phys. 2000;87(3):1410.

    Article  Google Scholar 

  23. Zhang PY, Hiergeist R, Albrecht M, Braun KF, Sievers S, Ludke J, Ge HL. Magnetization reversal behavior in high coercivity Zr doped α-Fe/Nd2Fe14B nanocomposite alloys. J Appl Phys. 2009;106(4):073904.

    Article  Google Scholar 

  24. Zheng B, Zhang HW, Zhao SF, Chen JL, Wu GH. The physical origin of open recoil loops in nanocrystalline permanent magnets. Appl Phys Lett. 2008;93(18):182503.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Project of Zhejiang Province Innovative Research Team (No. 2010R50016), the Provincial Natural Science Foundation (No. LQ12E01006), and the National natural Science Foundation of China (No. 51301158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Yue Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Zhang, PY., Pan, MX. et al. Crystallization kinetics and magnetization behavior of RE3.5Fe66.5Co10B20 (RE = Pr, Nd) nanocomposite ribbons. Rare Met. 33, 681–685 (2014). https://doi.org/10.1007/s12598-013-0136-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0136-8

Keywords

Navigation