Skip to main content
Log in

Reducing temperature distribution in solid-state lasers utilizing annular beam profile: modeling and simulation

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Based on Kirchhoff’s transformation a mathematical expression was derived to reduce the temperature distribution in a double-end-pumping configuration utilizing an annular intensity profile. The critical parameters affecting the laser rod temperature distribution, such as the cooling temperature, waist radii, and pump power were theoretically analyzed and simulated using the MATLAB software. The results revealed that with annular pumping; a reduction in temperature of approximately 28.58% was obtained compared to the top-hat intensity profile. In the present study, the derived expression offers an exact solution for thermal mitigation for different cavity configurations and laser parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Wu, L. Tang, C.L. Hardin, C. Dames, Y. Kodera, J.E. Garay, Thermal conductivity and management in laser gain materials: a nano/microstructural perspective. J. Appl. Phys. (2022). https://doi.org/10.1063/5.0073507

    Article  Google Scholar 

  2. M. Mojahedi, H. Shekoohinejad, Thermal stress analysis of a continuous and pulsed end-pumped Nd:YAG rod crystal using non-classic conduction heat transfer theory. Braz. J. Phys. 48(1), 46–60 (2018). https://doi.org/10.1007/s13538-017-0538-4

    Article  CAS  ADS  Google Scholar 

  3. Z. Li, X. Huai, W. Li, A study of the axisymmetric thermal strain in a laser rod with longitudinal temperature rise. Appl. Therm. Eng. 29(14–15), 2927–2934 (2009). https://doi.org/10.1016/j.applthermaleng.2009.02.017

    Article  Google Scholar 

  4. N.M. Al-Hosiny, A.A. El-Maaref, R.M. El-Agmy, Mitigation of thermal effects in end pumping of Nd:YAG and composite YAG/Nd:YAG laser crystals, modelling and experiments. Tech. Phys. 66(12), 1341–1347 (2021). https://doi.org/10.21883/jtf.2021.08.51103.38-21

    Article  CAS  Google Scholar 

  5. J. Cui, X. Liu, L. He, S. Zhang, J. Yang, Investigation of the transient thermal profile of an anisotropic crystal in a pulsed and end-pumped laser. J. Mod. Opt. 65(16), 1847–1854 (2018). https://doi.org/10.1080/09500340.2018.1455921

    Article  CAS  ADS  Google Scholar 

  6. M.H. Moghtader Dindarlu, M.K. Tehrani, H. Saghafifar, A. Maleki, Analytical model for temperature distribution of an end diode-pumped laser slab with Robin boundary conditions by Green’s function method. Laser. Phys. 26(5), 55001 (2016). https://doi.org/10.1088/1054-660X/26/5/055001

    Article  Google Scholar 

  7. F. Kalantarifard, H. Nadgaran, P. Elahi, The analytical and numerical investigation of thermo-optic effects in double-end-pumped solid state lasers. Int. J. Phys. Sci. 4(6), 385–389 (2009)

    CAS  Google Scholar 

  8. J.W. Kim, D.J. Kim, S.H. Noh, S.M. Ahn, Influence of a ring-shaped pump beam on temperature distribution and thermal lensing in end-pumped solid state lasers. Optics Express 25(13), 14668 (2017). https://doi.org/10.1364/oe.25.014668

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Y. Wang, Q. Wang, Q. Na, Y. Zhang, M. Gao, M. Zhang, Analysis of the thermal effect in diode end-pumped Er:YAG lasers by using Finite Element Method (2018) p. 67. https://doi.org/10.1117/12.2295879

  10. M. Y. Ghadban, K. S. Shibib, M. J. Abdulrazzaq, Analytical model of transient thermal effects in microchip laser crystal, in AIP Conference Proceedings, vol. 2213 (2020). https://doi.org/10.1063/5.0000277

  11. D. Lin, W. Andrew Clarkson, End-pumped Nd:YVO_4 laser with reduced thermal lensing via the use of a ring-shaped pump beam. Opt. Lett. 42(15), 2910 (2017). https://doi.org/10.1364/ol.42.002910

    Article  CAS  PubMed  ADS  Google Scholar 

  12. M. Sabaeian, F.S. Jalil-Abadi, M.M. Rezaee, A. Motazedian, M. Shahzadeh, Temperature distribution in a Gaussian end-pumped nonlinear KTP crystal: the temperature dependence of thermal conductivity and radiation boundary condition. Braz. J. Phys. 45(1), 1–9 (2015). https://doi.org/10.1007/s13538-014-0291-x

    Article  CAS  ADS  Google Scholar 

  13. Y. Sato, T. Taira, Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4 in Conf. Lasers Electro-Optics, 2007, CLEO 2007, no. June 2007 (2007), pp. 4–6. https://doi.org/10.1109/CLEO.2007.4453701

  14. M.J. AbdulRazzaq, K.S. Shibib, S.I. Younis, Temperature distribution and stress analysis of end pumped lasers under Gaussian pump profile. Opt. Quantum Electron. (2020). https://doi.org/10.1007/s11082-020-02499-y

    Article  Google Scholar 

  15. M.J. AbdulRazzaq, A.Z. Mohammed, A.K. Abass, K.S. Shibib, A new approach to evaluate temperature distribution and stress fracture within solid state lasers. Opt. Quantum Electron. 51(9), 294 (2019). https://doi.org/10.1007/s11082-019-2012-8

    Article  Google Scholar 

  16. M.J. Abdul Razzaq, K.A. Hubeatir, Analysis of thermal effects within cylindrical shape solid-state laser rod. Mater. Sci. Forum 1002, 264–272 (2020). https://doi.org/10.4028/www.scientific.net/MSF.1002.264

    Article  Google Scholar 

  17. H.M. Ahmed, M.J.A. Razzaq, A.K. Abass, Numerical thermal model of diode double-end-pumped solid state lasers. Int. J. Nanoelectron. Mater. 11(4), 473–480 (2018)

    Google Scholar 

  18. L. Cini, J.I. Mackenzie, Analytical thermal model for end-pumped solid-state lasers. Appl. Phys. B Lasers Opt. (2017). https://doi.org/10.1007/s00340-017-6848-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Jalal AbdulRazzaq.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Calculations of temperature distribution utilizing annular-beam profile in double end-pumped lasers configuration

Appendix A: Calculations of temperature distribution utilizing annular-beam profile in double end-pumped lasers configuration

The steady-state heat conductance equation described by Eq. (1) can be simplified by using the assumptions of an axisymmetric pump profile and isotropic cooling in the z-plane and it could be written as:

$$\frac{1}{r}\frac{{\text{d}}}{{{\text{d}}r}}\left[ {r k\left( T \right)\frac{{{\text{d}}T\left( {r,\;z} \right)}}{{{\text{d}}r}}} \right] + Q\left( {r,\;z} \right) = 0$$
(15)

Applying Kirchhoff transformation in term of function U, Eq. (15) can be solved as follows:

$$U_{{\left( {{\text{r}},\;{\text{z}}} \right)}} = \smallint k\left( T \right){\text{d}}T$$
(16)

This leads to

$$k\left( T \right) = \frac{{{\text{d}}U}}{{{\text{d}}T}}$$
(17)

Substituting Eq. (17) into Eq. (16), and by applying differentiation chain rule, Eq. (16) transformed into the linear form:

$$\nabla^{2} U_{{\left( {{\text{r,}}\;{\text{z}}} \right)}} = \frac{1}{r}\frac{{{\text{d}}U_{{\left( {{\text{r,}}\;{\text{z}}} \right)}} }}{{{\text{d}}r}} + \frac{{{\text{d}}^{2} U_{{\left( {{\text{r,}}\;\;{\text{z}}} \right)}} }}{{{\text{d}}r^{2} }} = - Q_{{\left( {{\text{r,}}\;\;{\text{z}}} \right)}}$$
(18)

In case of annular-beam pumping temperature distribution can be classified to three regions, for the inner region, \(0 \le r \le r_{1}\) Equation (18) can be written as

$$\frac{1}{r}\frac{{{\text{d}}U_{1} \left( {r,\;z} \right)}}{{{\text{d}}r}} + \frac{{{\text{d}}^{2} U_{1} \left( {r,\;z} \right)}}{{{\text{d}}r^{2} }} = 0$$
(19)

let \(\frac{{{\text{d}}U_{1} \left( {r,\;z} \right)}}{{{\text{d}}r}} = w_{1} \left( r \right)\) and \(\frac{{{\text{d}}^{2} U_{1} \left( {r,\;z} \right)}}{{{\text{d}}r^{2} }} = \frac{{{\text{d}}w_{1} \left( r \right)}}{{{\text{d}}r}}\). Multiplying by r and Substituting \({1} = \frac{{{\text{d}}r}}{{{\text{d}}r}}\), that gives

$$\frac{{{\text{d}}r}}{{{\text{d}}r}} w_{1} \left( r \right) + r\frac{{{\text{d}}w_{1} \left( r \right)}}{{{\text{d}}r}} = 0$$
(20)

Equation (20) can be written as

$$\frac{{\text{d}}}{{{\text{d}}r}}\left[ {r w_{1} \left( r \right)} \right] = 0$$
(21)

And by applying integration into Eq. (21), that gives

$$w_{1} \left( r \right) = \frac{{{\text{d}}U_{1} \left( {r,\;z} \right)}}{{{\text{d}}r}} = \frac{A}{r}$$
(22)

where A is an integration constant. By using another integration,

$$U_{1} \left( {r,\;z} \right) = A\;\ln \;\left( r \right) + B$$
(23)

Equations (2) and (16), gives

$$U = \frac{{k_{0} }}{{\left( {m + 1} \right) T_{0}^{m} }}T^{m + 1} + C$$
(24)

Then the temperature equation would be

$$T_{1} \left( {r,\;z} \right) = \left\{ {\left( {A\;\ln \;\left( r \right) + B} \right)\frac{{T_{0}^{m} \left( {m + 1} \right)}}{{k_{0} }}} \right\}^{{\frac{1}{m + 1}}}$$
(25)

For the second region, \(r_{1} < r \le r_{2}\),Eq. (18) becomes

$$\frac{1}{r}\frac{{{\text{d}}U_{2} \left( {r,\;z} \right)}}{{{\text{d}}r}} + \frac{{{\text{d}}^{2} U_{2} \left( {r,\;z} \right)}}{{{\text{d}}r^{2} }} = - Q_{L} e^{ - \alpha z} - Q_{R} e^{{ - \alpha \left( {l - z} \right)}}$$
(26)

In the same way, this equation was solved and the result was

$$U_{2} \left( {r,\;z} \right) = \frac{{ - Q_{L} e^{ - \alpha z} }}{4}r^{2} - \frac{{Q_{R} e^{{ - \alpha \left( {l - z} \right)}} }}{4}r^{2} + D\;\ln \;\left( r \right) + E$$
(27)

And by using Eq. (24), temperature equation was obtained

$$T_{2} \left( {r,\;z} \right) = \left\{ {\left( {\frac{{ - Q_{{\text{L}}} e^{ - \alpha z} }}{4}r^{2} - \frac{{Q_{{\text{R}}} e^{{ - \alpha \left( {l - z} \right)}} }}{4}r^{2} + D\;\ln \left( r \right) + E} \right)\frac{{T_{0}^{m} \left( {m + 1} \right)}}{{k_{0} }}} \right\}^{{\frac{1}{{{\text{m}} + 1}}}}$$
(28)

For the last region,\(r_{2} < r \le { }r_{0}\), Eq. (18) becomes

$$\frac{1}{r}\frac{{{\text{d}}U_{3} \left( {r,\;z} \right)}}{{{\text{d}}r}} + \frac{{{\text{d}}^{2} U_{3} \left( {r,\;z} \right)}}{{{\text{d}}r^{2} }} = 0$$
(29)

Using the same steps, this equation was solved to obtain

$$U_{3} \left( {r,\;z} \right) = G\ln \;\left( r \right) + H$$
(30)

Equation (24) utilized to obtain temperature equation

$$T_{3} = \left\{ {\left( {G\ln \left( r \right) + H} \right)\frac{{T_{0}^{m} \left( {m + 1} \right)}}{{k_{0} }}} \right\}^{{\frac{1}{m + 1}}}$$
(31)

A, B, D, E, G, and H are integration constants, that can be found by using a boundary conditions.

For symmetry reasons, the heat flux in r direction must be zero at the center of the rod, which means:

$$- k\left( T \right)\left. {\frac{{{\text{d}}T_{1} }}{{{\text{d}}r}}} \right|_{r = 0} = 0$$
(32)

Substitute Eq. (17) into Eq. (32), the first boundary condition written as

$$- \left. {\frac{{{\text{d}}U_{1} }}{{{\text{d}}r}}} \right|_{r = 0} = 0$$
(33)

And by using Eq. (A-11), the first integration constant obtained

$$A = 0$$
(34)

On the other hand, the boundary condition at the rod surface \(\left(r={r}_{0}\right)\) can be written as:

$$\left. { - \frac{{{\text{d}}U_{3} \left( {r,\;z} \right)}}{{{\text{d}}r}}} \right|_{{r = r_{0} }} = h\left[ {T_{3} \left( {r = r_{0} } \right) - T_{{\text{c}}} } \right]$$
(35)

Substituting Eqs. (30) and (31) into Eq. (35) that lead to

$$\frac{G}{{r_{0} h}} = T_{{\text{c}}} - \left\{ {\left( {G\ln \left( {r_{0} } \right) + H} \right)\frac{{T_{0}^{m} \left( {m + 1} \right)}}{{k_{0} }}} \right\}^{{\frac{1}{m + 1}}}$$
(36)

The other boundary conditions at \(r = r_{1}\) and \(r = r_{2}\) where

$$T_{1} \left( {r = r_{1} } \right) = T_{2} \left( {r = r_{1} } \right)$$
(37)

That gives

$$\left\{ {\left( {A\;\ln \left( {r_{1} } \right) + B} \right)\frac{{T_{0}^{m} \left( {m + 1} \right)}}{{k_{0} }}} \right\}^{{\frac{1}{m + 1}}} = \left\{ {\left( {\frac{{ - Q_{0,1} e^{ - \alpha z} }}{4}r_{1}^{2} - \frac{{Q_{0,2} e^{{ - \alpha \left( {l - z} \right)}} }}{4}r_{1}^{2} + D\;\ln \;\left( {r_{1} } \right) + E} \right)\frac{{T_{0}^{m} \left( {m + 1} \right)}}{{k_{0} }}} \right\}^{{\frac{1}{m + 1}}}$$
(38)

And

$$\left. {\frac{{{\text{d}}T_{1} }}{{{\text{d}}r}}} \right|_{{r = r_{1} }} = \left. {\frac{{{\text{d}}T_{2} }}{{{\text{d}}r}}} \right|_{{r = r_{1} }}$$
(39)

Which gives

$$\begin{gathered} \frac{1}{m + 1}\left\{ {\left( {A\;\ln \;\left( {r_{1} } \right) + B} \right)\frac{{T_{0}^{m} \left( {m + 1} \right)}}{{k_{0} }}} \right\}^{{\frac{ - m}{{m + 1}}}} *\frac{A}{{r_{1} }}*\frac{{T_{0}^{m} \left( {m + 1} \right)}}{{k_{0} }} \hfill \\ = \frac{1}{m + 1}\left\{ {\left( {\frac{{ - Q_{0,1} e^{ - \alpha z} }}{4}r_{1}^{2} - \frac{{Q_{0,2} e^{{ - \alpha \left( {l - z} \right)}} }}{4}r_{1}^{2} + D\;\ln \;\left( {r_{1} } \right) + E} \right)\frac{{T_{0}^{m} \left( {m + 1} \right)}}{{k_{0} }}} \right\}^{{\frac{ - m}{{m + 1}}}} \hfill \\ *\left( {\frac{{ - Q_{0,1} e^{ - \alpha z} }}{2}r_{1} - \frac{{Q_{0,2} e^{{ - \alpha \left( {l - z} \right)}} }}{2}r_{1} + \frac{D}{{r_{1} }}} \right)*\frac{{T_{0}^{m} \left( {m + 1} \right)}}{{k_{0} }} \hfill \\ \end{gathered}$$
(40)

And for the other condition, at \(r = r_{2}\)

$$T_{2} \left( {r = r_{2} } \right) = T_{3} \left( {r = r_{2} } \right)$$
(41)
$$\left. {\frac{{{\text{dT}}_{2} }}{{{\text{dr}}}}} \right|_{{{\text{r}} = {\text{r}}_{2} }} = \left. {\frac{{{\text{dT}}_{3} }}{{{\text{dr}}}}} \right|_{{{\text{r}} = {\text{r}}_{2} }}$$
(42)

That give:

$$\frac{{ - Q_{0,\;1} e^{ - \alpha z} }}{4}r_{2}^{2} - \frac{{Q_{0,\;2} e^{{ - \alpha \left( {l - z} \right)}} }}{4}r_{2}^{2} + D\;\ln \;\left( {r_{2} } \right) + E = G\ln \;\left( {r_{2} } \right) + H$$
(43)
$$\begin{gathered} \left( {\frac{{ - Q_{0,\;1} e^{ - \alpha z} }}{4}r_{2}^{2} - \frac{{Q_{0,\;2} e^{{ - \alpha \left( {l - z} \right)}} }}{4}r_{2}^{2} + D\ln \left( {r_{2} } \right) + E} \right)^{{\frac{ - m}{{m + 1}}}} \left( {\frac{{ - Q_{0,\;1} e^{ - \alpha z} }}{2}r_{2} - \frac{{Q_{0,\;2} e^{{ - \alpha \left( {l - z} \right)}} }}{2}r_{2} + \frac{D}{{r_{2} }}} \right) \hfill \\ = \frac{G}{{r_{2} }}\left( {G\ln \left( {r_{2} } \right) + H} \right)^{{\frac{ - m}{{m + 1}}}} \hfill \\ \end{gathered}$$
(44)

\(B,D,E,G,\mathrm{and} H\) can be found by solving Eqs. (36), (38), (40), (43), and (44)

$$\begin{gathered} B = \frac{{Q_{0,\;1} e^{ - \alpha z} }}{4}\left( {r_{2}^{2} - r_{1}^{2} + r_{2}^{2} \ln \left( {\frac{{r_{0}^{2} }}{{r_{2}^{2} }}} \right) - r_{1}^{2} \ln \left( {\frac{{r_{0}^{2} }}{{r_{1}^{2} }}} \right)} \right) + \frac{{Q_{0,\;2} e^{{ - \alpha \left( {L - z} \right)}} }}{4}\left( {r_{2}^{2} - r_{1}^{2} + r_{2}^{2} \ln \left( {\frac{{r_{0}^{2} }}{{r_{b}^{2} }}} \right) - r_{1}^{2} \ln \left( {\frac{{r_{0}^{2} }}{{r_{1}^{2} }}} \right)} \right) \hfill \\ + \frac{{k_{0} }}{{T_{0}^{m} \left( {m + 1} \right)}}\left[ {T_{{\text{c}}} + \frac{{Q_{0,\;1} e^{ - \alpha z} }}{{2r_{0} h}}\left( {r_{2}^{2} - r_{1}^{2} } \right) + \frac{{Q_{0,\;2} e^{{ - \alpha \left( {L - z} \right)}} }}{{2r_{0} h}}\left( {r_{2}^{2} - r_{1}^{2} } \right)} \right]^{m + 1} \hfill \\ \end{gathered}$$
(45)
$$D = \frac{{Q_{0,\;1} e^{ - \alpha z} }}{2}r_{1}^{2} + \frac{{Q_{0,\;2} e^{{ - \alpha \left( {L - z} \right)}} }}{2}r_{1}^{2}$$
(46)
$$\begin{gathered} E = \frac {{k}_{0}}{T_{0}^{m} (m + 1)} \left[ {T_{c} + \frac{{Q_{0,\;1} e^{ - \alpha z} }}{{2r_{0} h}}\left( {r_{2}^{2} - r_{1}^{2} } \right) + \frac{{Q_{0,2} e^{{ - \alpha \left( {L - z} \right)}} }}{{2r_{0} h}}\left( {r_{2}^{2} - r_{1}^{2} } \right)} \right]^{m + 1} + \;\frac{{Q_{0,\;1} e^{ - \alpha z} }}{4}\left( { - 2r_{2}^{2} \ln \left( {r_{2} } \right) + 2r_{2}^{2} \ln \left( {r_{0} } \right) - 2r_{1}^{2} \ln \left( {r_{0} } \right) + r_{2}^{2} } \right) \hfill \\ + \frac{{Q_{0,\;2} e^{{ - \alpha \left( {L - z} \right)}} }}{{2r_{0} h}}\left( { - 2r_{2}^{2} \ln \left( {r_{2} } \right) + 2r_{2}^{2} \ln \left( {r_{0} } \right) - 2r_{1}^{2} \ln \left( {r_{0} } \right) + r_{1}^{2} } \right) \hfill \\ \end{gathered}$$
(47)
$$G = \frac{{ - Q_{0,\;1} e^{ - \alpha z} }}{2}r_{2}^{2} - \frac{{Q_{0,\;2} e^{{ - \alpha \left( {L - z} \right)}} }}{2}r_{2}^{2} + \frac{{Q_{0,\;1} e^{ - \alpha z} }}{2}r_{1}^{2} + \frac{{Q_{0,\;2} e^{{ - \alpha \left( {L - z} \right)}} }}{2}r_{1}^{2}$$
(48)
$$\begin{gathered} H = \frac{{k_{0} }}{{T_{0}^{m} \left( {m + 1} \right)}}\left[ {T_{{\text{c}}} + \frac{{Q_{0,\;1} e^{ - \alpha z} }}{{2r_{0} h}}r_{2}^{2} + \frac{{Q_{0,\;2} e^{{ - \alpha \left( {L - z} \right)}} }}{{2r_{0} h}}r_{2}^{2} - \frac{{Q_{0,1} e^{ - \alpha z} }}{{2r_{0} h}}r_{1}^{2} - \frac{{Q_{0,\;2} e^{{ - \alpha \left( {L - z} \right)}} }}{{2r_{0} h}}r_{1}^{2} } \right]^{m + 1} + \frac{{Q_{0} e^{ - \alpha z} }}{2} \hfill \\ r_{2}^{2} \ln \left( {r_{0} } \right) + \frac{{Q_{0,\;2} e^{{ - \alpha \left( {L - z} \right)}} }}{2}r_{2}^{2} \ln \left( {r_{0} } \right) - \frac{{Q_{0,\;1} e^{ - \alpha z} }}{2}r_{1}^{2} \ln \left( {r_{0} } \right) - \frac{{Q_{0,\;2} e^{{ - \alpha \left( {L - z} \right)}} }}{2}r_{1}^{2} \;{\text{In}}\;\;(r_{0} ) \hfill \\ \end{gathered}$$
(49)

Substitute Eqs. (45), (46), (47), (48), and (49) into the Eqs. (25), (28), and (31) to obtain

$$\begin{aligned} T_{1} \left( {r,\;z} \right) = & \left\{ {\frac{{\eta_{h} \alpha T_{0}^{m} \left( {m + 1} \right)}}{{4\pi k_{0} }}\left( {P_{{{\text{inL}}}} e^{ - \alpha z} + P_{{{\text{inR}}}} e^{{ - \alpha \left( {l - z} \right)}} } \right)} \right.\left( {\frac{{r_{2}^{2} - r_{1}^{2} + r_{2}^{2} \ln \left( {\frac{{r_{0}^{2} }}{{r_{2}^{2} }}} \right) - r_{1}^{2} \ln \left( {\frac{{r_{0}^{2} }}{{r_{1}^{2} }}} \right)}}{{r_{2}^{2} - r_{1}^{2} }}} \right) \\ \,\left. { + \left[ {T_{{\text{c}}} + \frac{{\eta_{{\text{h}}} \alpha }}{{2\pi r_{0} h}}\left( {P_{{{\text{inL}}}} e^{ - \alpha z} + P_{{{\text{inR}}}} e^{{ - \alpha \left( {l - z} \right)}} } \right)^{m + 1} } \right]} \right\}^{{\frac{1}{m + 1}}} \\ \end{aligned}$$
(50)
$$\begin{gathered} T_{2} \left( {r,z} \right) = \left\{ {\frac{{\eta_{h} \alpha T_{0}^{m} \left( {m + 1} \right)}}{{4\pi k_{0} }}\left( {P_{{{\text{inL}}}} e^{ - \alpha z} + P_{{{\text{inR}}}} e^{{ - \alpha \left( {l - z} \right)}} } \right)\left( {\frac{{r_{2}^{2} - r^{2} + r_{2}^{2} \ln \left( {\frac{{r_{0}^{2} }}{{r_{2}^{2} }}} \right) - r_{1}^{2} \ln \left( {\frac{{r_{0}^{2} }}{{r^{2} }}} \right)}}{{\left( {r_{2}^{2} - r_{1}^{2} } \right)}}} \right)} \right. \hfill \\ \left. { + \left[ {T_{c} + \frac{{\eta_{h} \alpha }}{{2\pi r_{0} h}}\left( {P_{{{\text{inL}}}} e^{ - \alpha z} + P_{{{\text{inR}}}} e^{{ - \alpha \left( {l - z} \right)}} } \right)} \right]^{m + 1} } \right\}^{{\frac{1}{m + 1}}} \hfill \\ \end{gathered}$$
(51)
$$\begin{aligned} T_{3} \left( {r,\;z} \right) & = \left\{ {\frac{{\eta_{{\text{h}}} \alpha T_{0}^{m} \left( {m + 1} \right)}}{{4\pi k_{0} }}\left( {P_{{{\text{inL}}}} e^{ - \alpha z} + P_{{{\text{inR}}}} e^{{ - \alpha \left( {l - z} \right)}} } \right)\ln \;\left( {\frac{{r_{0}^{2} }}{{r^{2} }}} \right)} \right. \\ \left. { + \left[ {T_{{\text{c}}} + \frac{{\eta_{h} \alpha }}{{2\pi r_{0} h}}\left( {P_{{{\text{inL}}}} e^{ - \alpha z} + P_{{{\text{inR}}}} e^{{ - \alpha \left( {l - z} \right)}} } \right)} \right]^{m + 1} } \right\}^{{\frac{1}{m + 1}}} \\ \end{aligned}$$
(52)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazal, Z.A., AbdulRazzaq, M.J. & Ibrahim, R.K. Reducing temperature distribution in solid-state lasers utilizing annular beam profile: modeling and simulation. J Opt 53, 518–527 (2024). https://doi.org/10.1007/s12596-023-01168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01168-z

Keywords

Navigation