Skip to main content
Log in

Studies on crystal structure, morphology, optical and photoluminescence properties of flake-like Sb doped Y2O3 nanostructures

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In the present research work, Sb doped Y2O3 nano structures (NS) with different concentrations (5%, 8% and 10%) synthesized by self propogating room temperature method. Nanostructures are characterized by UV–visible, XRD (X-ray diffraction), SEM (scanning electron microscopy) and XPS (X-ray photoelectron) spectroscopic techniques. Flake-like morphology of the NS observed in SEM analysis having grain size varies in between 65 and 93 nm. Chemical composition of the constituent elements has been determined from XPS analysis with Sb 3d3/2, Sb 3d5/2, Y 3d3/2 and Y 3d5/2 binding energies appeared at 540 eV, 530 eV, 165.8 eV and 154.4 eV, respectively. XRD pattern depicted mixed phase of cubic crystal structure with crystallite size lying between 36.8 and 29.9 nm. Red shift in the optical absorptivity was observed in the spectrum, and spectral shift from ultraviolet to visible region with optical band gap (Eg) value decreases from 3.36 to 1.98 eV. Upon excitation with ultraviolet radiation (λexcitation = 280 nm), NS showed red emission in all concentrations of Sb dopant and maximal emission intensity appeared at 475.5 nm for 10% of Sb dopant concentration. The NS finds prominent utility in the field of optoelectronics and photoelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Krsmanović, Ž Antić, B. Bártová, M.D. Dramićanin, J. Alloy. Comp. (2010). https://doi.org/10.1016/j.jallcom.2010.06.033

    Article  Google Scholar 

  2. R.M. Krsmanović, Ž Antić, M.G. Nikolić, M. Mitrić, M.D. Dramićanin, Ceram. Int. (2011). https://doi.org/10.1016/j.ceramint.2010.09.040

    Article  Google Scholar 

  3. R. Schmechel, M. Kennedy, H. von Seggem, H. Winkler, M. Kolbe, R. Fisher, L. Xaomao, A. Benker, M. Winterer, H. Hahn, J. Appl. Phys. (2001). https://doi.org/10.1063/1.1333033

    Article  Google Scholar 

  4. M.Z. Su, W. Yhao, in Spectroscopic Properties of Rare Earths in Optical Materials, ed. by L. Guokui, J. Bernard (Springer, Berlin, 2005), p. 521

  5. F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini, M. Bettinelli, Nanotechnology (2004). https://doi.org/10.1088/0957-4484/15/1/015

    Article  Google Scholar 

  6. R.M. Krsmanović, Ž Antić, B. Bártová, M.G. Brik, M.D. Dramićanin, Ceram. Int. (2012). https://doi.org/10.1016/j.ceramint.2011.09.004

    Article  Google Scholar 

  7. J. Li, Y. Zhang, G. Hong, Y. Yu, J. Rare Earths (2008). https://doi.org/10.1016/S1002-0721(08)60116-7

    Article  Google Scholar 

  8. M.K. Devaraju, S. Yin, T. Sato, Eur. J. Inorg. Chem (2009). https://doi.org/10.1002/ejic.200900511

    Article  Google Scholar 

  9. Q. Yanmin, G. Hai, J. Rare Earths (2009). https://doi.org/10.1016/S1002-0721(08)60261-6

    Article  Google Scholar 

  10. D.L. Phan, M.H. Phan, N. Vu, T.K. Anh, S.C. Yu, Phys. Status Solidi (2004). https://doi.org/10.1002/pssa.200406825

    Article  Google Scholar 

  11. Ž. Antić, R. Krsmanović, M. Wojtowicz, E. Zych, B. Bártová, M.D. Dramićanin, Opt. Mater. (2010).  https://doi.org/10.1016/j.optmat.2010.05.022

    Article  Google Scholar 

  12. Ž. Antić, R. Krsmanović, V. Ðorđević, T. Dramićanin, M.D. Dramićanin, Acta Phys. Pol. A (2010). https://doi.org/10.12693/APhysPolA.116.622

    Article  Google Scholar 

  13. W. De Gejihu, J. Qin, J. Zhang, Y. Zhang, C. Wang, Y.C. Cao, J. Lumin. (2006). https://doi.org/10.1016/j.jlumin.2005.12.041

    Article  Google Scholar 

  14. S. Zeng, K. Tang, T. Li, Z. Liang, J. Colloid, Interface Sci. (2007). https://doi.org/10.1016/j.jcis.2007.08.034

    Article  Google Scholar 

  15. J.R. Jayaramaiah, K.R. Nagabhushana, B.N. Lakshminarasappa, J. Anal. Appl. Pyrolysis (2017). https://doi.org/10.1016/j.jaap.2016.11.023

    Article  Google Scholar 

  16. J. Yang, Z. Quan, D. Kong, X. Liu, J. Lin, Cryst. Growth Des. (2007). https://doi.org/10.1021/cg060717j

    Article  Google Scholar 

  17. L. Mancic, V. Lojpur, B.A. Marinkovic, M.H. de Pinho Mauricio, M.D. Dramicanin, O. Milosevic, Adv. Powder. Technol. (2014). https://doi.org/10.1016/j.apt.2014.03.015

    Article  Google Scholar 

  18. X. Li, Q. Li, Z. Xia, L. Wang, W. Yan, J. Wang, R.I. Boughton, Cryst. Growth Des. (2006). https://doi.org/10.1021/cg0600400

    Article  Google Scholar 

  19. J. Zhou, Y. Yang, L. Wang, X. Zhang, L. Wang, Opt. Laser. Technol. (2019). https://doi.org/10.1016/j.optlastec.2018.12.032

    Article  Google Scholar 

  20. J.B. Prasanna Kumar, G. Ramgopal, Y.S. Vidya, K.S. Anantharaju, B. Daruka Prasad, S.C. Sharma, S.C. Prashantha, H.B. Premkumar, H. Nagabhushana, Spectrochim. Acta A (2015). https://doi.org/10.1016/j.saa.2015.01.055

    Article  Google Scholar 

  21. A. Jain, P. Sengar, G.A. Hirata, J. Phys. D Appl. Phys. (2018). https://doi.org/10.1088/1361-6463/aaca49/meta

    Article  Google Scholar 

  22. G. Monsch, P. Klüfers, Angew. Chem. (2019). https://doi.org/10.1002/anie.201902374

    Article  Google Scholar 

  23. G. Bhavani, S. Ganesan, Acta Phys. Pol. (2016). https://doi.org/10.12693/APhysPolA.130.1373

    Article  Google Scholar 

  24. G. Rajakumar, L. Mao, T. Bao, W. Wen, S. Wang, T. Gomathi, N. Gnanasundaram, M. Rebezov, M.A. Shariati, I.M. Chung, M. Thiruvengadam, X. Zhang, Appl. Sci. (2021). https://doi.org/10.3390/app11052172

    Article  Google Scholar 

  25. D. Nunes, A. Pimentel, M. Matias, T. Freire, A. Araújo, F. Silva, P. Gaspar, S. Garcia, P.A. Carvalho, E. Fortunato, R. Martins, Nanomaterials (Basel, Switzerland) (2019). https://doi.org/10.3390/nano9020234

  26. P. Pandit, Mater. Today Proc. (2017). https://doi.org/10.1016/j.matpr.2017.02.290

    Article  Google Scholar 

  27. J. Hoang, T.T. Van, M. Sawkar-Mathur, B. Hoex, M.C.M. Van de Sanden, W.M.M. Kessels, R. Ostroumov, K.L. Wang, J.R. Bargar, J.P. Chang, J. Appl. Phys. (2007). https://doi.org/10.1063/1.2748629

    Article  Google Scholar 

  28. X. Jiang, Z. Peng, Y. Gao, F. You, C. Yao, Powder Technol. (2021). https://doi.org/10.1016/j.powtec.2020.09.030

    Article  Google Scholar 

  29. U. Oemar, K. Hidajat, S. Kawi, Int. J. Hydrog. Energy. (2015). https://doi.org/10.1016/j.ijhydene.2015.07.076

    Article  Google Scholar 

  30. A.P. Jadhav, A.U. Pawar, U. Pal, Y.S. Kang, J. Mater. Chem. C (2014). https://doi.org/10.1039/C3TC31939C

    Article  Google Scholar 

  31. E.J. Rubio, V.V. Atuchin, V.N. Kruchinin, L.D. Pokrovsky, I.P. Prosvirin, C.V. Ramana, J. Phys. Chem. C (2014). https://doi.org/10.1021/jp502876r

    Article  Google Scholar 

  32. H. Yang, M. Li, L. Fu, Sci. Rep. (2013). https://doi.org/10.1038/srep01336

    Article  Google Scholar 

  33. T. Honma, R. Sato, Y. Benino, T. Komatsu, V. Dimitrov, J. Non-Cryst, Solids (2000). https://doi.org/10.1016/S0022-3093(00)00156-3

    Article  Google Scholar 

  34. Y. Kumar, M. Pal, M. Herrera, X. Mathew, Opt. Mater. (2016). https://doi.org/10.1016/j.optmat.2016.07.026

    Article  Google Scholar 

  35. J.J. Tang, Y. Wang, Z. Jiao, M. Wu, Mater. Lett. (2009). https://doi.org/10.1016/j.matlet.2009.03.044

    Article  Google Scholar 

  36. Y. Qiu, S. Yang, H. Deng, L. Jin, W. Li, J. Mater. Chem. (2010). https://doi.org/10.1039/C0JM00101E

    Article  Google Scholar 

  37. D. Wang, D. Yu, M. Mo, X. Liu, Y. Qian, J. Cryst. Growth (2003). https://doi.org/10.1016/S0022-0248(03)01019-4

    Article  Google Scholar 

  38. Y. Taher, A. Mustafa, J. Nanoeng. Nanomanuf. (2012). https://doi.org/10.1166/jnan.2012.1080

    Article  Google Scholar 

  39. G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, Y. Cui, J. Lumin. (2006). https://doi.org/10.1016/j.jlumin.2005.12.041

    Article  Google Scholar 

  40. H. Ahmadian, F. Al Hessari, A.M. Arabi, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.06.106

    Article  Google Scholar 

  41. S. Kumar, F.A. Alharthi, A. Marghany, F. Ahmed, N. Ahmad, K.H. Chae, K. Kumari, Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2020.09.268

    Article  Google Scholar 

  42. R. Medhi, C.H. Li, S.H. Lee, M.D. Marquez, A.J. Jacobson, T.C. Lee, T.R. Lee, ACS Appl. Nano Mater. (2019). https://doi.org/10.1021/acsanm.9b01474

    Article  Google Scholar 

  43. U. Anitha, C. Jithin, Varughese. Mater. Today (2016). https://doi.org/10.1016/j.matpr.2016.01.046

    Article  Google Scholar 

  44. S. Saha, M. Jana, P. Khanra, P. Samanta, H.Y. Koo, N.C. Murmu, T. Kuila, RSC. Adv. (2015). https://doi.org/10.1039/C5RA20928E

    Article  Google Scholar 

  45. K.W. Noh, University of Illinois at Urbana-Champaign, 2010, Urbana, Illinois. http://hdl.handle.net/2142/15964

  46. N. Shehata, K. Meehan, M. Hudait, N. Jain, J. Nanopart. Res. (2012). https://doi.org/10.1007/s11051-012-1173-1

    Article  Google Scholar 

  47. P. Patsalas, S. Logothetidis, L. Sygellou, S. Kennou, Phys. Rev. B. (2003). https://doi.org/10.1103/PhysRevB.68.035104

    Article  Google Scholar 

  48. W. Wang, P. Zhu, Opt. Express. (2018). https://doi.org/10.1364/OE.26.034820

    Article  Google Scholar 

  49. J.Z. Liu, P.X. Yan, G.H. Yue, J.B. Chang, D.M. Qu, R.F. Zhuo, J. Phys. D: Appl. Phys. (2006). https://doi.org/10.1088/0022-3727/39/11/006/meta

    Article  Google Scholar 

  50. K.H. Lee, Y.J. Bae, S.H. Byeon, Bull. Korean Chem. Soc. (2008). https://doi.org/10.5012/bkcs.2008.29.11.2161

    Article  Google Scholar 

  51. L. Shastri, M.S. Qureshi, M.M. Malik, J. Phys. Chem. Solids (2013). https://doi.org/10.1016/j.jpcs.2012.12.012

    Article  Google Scholar 

  52. C. Insu, K. Jun-Gill, S. Youngku, Bull. Korean Chem. Soc. (2014). https://doi.org/10.5012/BKCS.2014.35.2.575

    Article  Google Scholar 

  53. N. Ueda, H. Maeda, H. Hosono, H. Kawazoe, J. Appl. Phys. (1998). https://doi.org/10.1063/1.368933

    Article  Google Scholar 

  54. N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, C. Shivakumara, K. Narahari, R.P.S. Chakradhar, Spectrochim. Acta. Part. A (2012). https://doi.org/10.1016/j.saa.2011.05.072

    Article  Google Scholar 

  55. F. Wang, X.G. Liu, Chem. Soc. Rev. 38, 976–989 (2009). https://doi.org/10.1039/B809132N

    Article  Google Scholar 

  56. H. Nagabhushana, B.M. Nagabhushana, M.M. Kumar, Chikkahanumantharayappa, K.V.R. Murthy, C. Shivakumara, R.P.S. Chakradhar, Spectrochim. Acta Part A. 78, 64–69 (2011). https://doi.org/10.1016/j.saa.2010.08.063

    Article  ADS  Google Scholar 

  57. R. Nasser, W.B.H. Othmen, H. Elhouichet, M. Férid, Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2016.09.158

    Article  Google Scholar 

  58. Z. Xu, Q. Zhao, B. Ren, L. You, Y. Sun, J. Nanosci. Nanotechnol. (2014). https://doi.org/10.1166/jnn.2014.8741

    Article  Google Scholar 

  59. H.J. Devi, W.R. Singh, R. Singh Loitongbam, J. Fluoresc. (2016). https://doi.org/10.1007/s10895-016-1776-5

    Article  Google Scholar 

  60. M. Scarafagio, A. Tallaire, K.J. Tielrooij, D. Cano, A. Grishin, M.H. Chavanne, F.H.L. Koppens, A. Ringuedé, M. Cassir, D. Serrano, P. Goldner, A. Ferrier, J. Phys. Chem. C (2019). https://doi.org/10.1021/acs.jpcc.9b02597

    Article  Google Scholar 

  61. V.G. Kravets, Opt. Spectrosc. (2007). https://doi.org/10.1134/S0030400X07110148

    Article  Google Scholar 

  62. Q. Wang, W. Wu, J. Zhang, G. Zhu, R. Cong, J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.10.110

    Article  Google Scholar 

  63. R.R. Pereira, F.T. Aquino, A.F.P. Goldner, R.R. Gonçalves, J. Lumin. (2016). https://doi.org/10.1016/j.jlumin.2015.08.068

    Article  Google Scholar 

  64. K.V. Chandekar, A. Khan, T. Alshahrani, M. Shkir, A. Kumar, A.M. El-Toni, A.A. Ansari, A. Aldalbahi, M. Ahmed, S. AlFaify, Mater. Charact. (2020). https://doi.org/10.1016/j.matchar.2020.110688

    Article  Google Scholar 

  65. T. Som, B. Karmakar, J. Opt. Soc. Am. B (2009). https://doi.org/10.1364/JOSAB.26.000B21

    Article  Google Scholar 

Download references

Acknowledgements

All the authors are thankful to Centre for Advanced Material Technology, RIT, Bangalore, Karnataka, India, for characterization of the NS and Centre for Nano and Material Science, Jain University, Bangalore, Karnataka, India, for photoluminescence studies.

Author information

Authors and Affiliations

Authors

Contributions

Dr VA contributed to design, synthesis of the nanostructures, manuscript preparation and revision. Dr. KS contributed to manuscript correction, arrangement and characterization of the samples. Dr. BCY contributed to characterization and carrying out photoluminescence studies.

Corresponding author

Correspondence to Vinayak Adimule.

Ethics declarations

Conflict of interest

All authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adimule, V., Yallur, B.C. & Sharma, K. Studies on crystal structure, morphology, optical and photoluminescence properties of flake-like Sb doped Y2O3 nanostructures. J Opt 51, 173–183 (2022). https://doi.org/10.1007/s12596-021-00746-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-021-00746-3

Keywords

Navigation