Skip to main content
Log in

Band gap tailoring and photosensitivity study of Al-doped SnO2 nanocrystallites prepared by sol–gel technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrical, optical and photosensitivity of aluminium-doped tin oxide (Al-SnO2) nanocrystallites prepared by sol–gel technique and annealed at 400 °C and 500 °C are studied. The synthesized nanocrystallites are characterized using spectroscopic techniques such as powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX) and UV–VIS-DRS spectroscopy. The PXRD data confirm the development of polycrystalline nanocrystallites having crystal size ≈ 6.8 nm at 400 °C which increases to ≈ 8.7 nm on annealing at 500 °C. SEM images illustrate the formation of nanoclusters. Broad characteristics bands of FTIR spectra demonstrate the presence of physical interaction between SnO2 and Al2O3. EDX spectra illustrate the presence of aluminium, tin and oxygen in the particles annealed at 400 °C and 500 °C with composition Sn0.726Al0.274O2 and Sn0.809Al0.191O2, respectively. UV–VIS-DRS spectroscopy illustrates that the band gap energy of 400 °C and 500 °C annealed materials are 3.42 and 3.35 eV, respectively. First time, the electrical properties and photosensitivity of the Al-SnO2 nanocrystallites annealed at two different temperatures are studied by making the particles into thin films of thickness 103µ (400 °C) and 106µ (500 °C) on glass substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. T. Coutts, D. Young, X. Li, MRS Bull. 25, 58 (2000)

    Article  CAS  Google Scholar 

  2. C. Granqvist, Sol. Energy Mater. Sol. Cells 91, 1529 (2007)

    Article  CAS  Google Scholar 

  3. Q. He, Y. Ni, S. Ye, RSC Adv. 7, 27089 (2017)

    Article  CAS  Google Scholar 

  4. L. Fan, Y. Li, X. Lin, J. Peng, G. Ju, S. Zhang, L. Chen, F. He, Y. Hu, RSC Adv. 7, 44908 (2017)

    Article  CAS  Google Scholar 

  5. V.V. Kutwade, K.P. Gattu, A.S. Dive, M.E. Sonawane, D.A. Tonpe, R. Sharma, J. Mater. Sci. Mater. Electron. 32, 6475 (2021)

    Article  CAS  Google Scholar 

  6. S.H. Saeedabad, G.S. Selopal, S.M. Rozati, Y. Tavakoli, G. Sberveglieri, J. Electron. Mater. 47, 5165 (2018)

    Article  CAS  Google Scholar 

  7. J.H. Kim, T.W. Kang, S.N. Kwon, S.I. Na, Y.Z. Yoo, H.S. Im, T.Y. Seong, J. Electron. Mater. 46, 306 (2017)

    Article  CAS  Google Scholar 

  8. Z. Peng, Z. Shi, M. Liu, Chem. Commun. 21, 2125 (2000)

    Article  Google Scholar 

  9. M. Yehia, S. Labib, S.M. Ismail, J. Electron. Mater. 48, 4170 (2019)

    Article  CAS  Google Scholar 

  10. S. Chen, Z. Sun, L. Zhang, H. Xie, Catalysts 10, 117 (2020)

    Article  Google Scholar 

  11. R. Niranjan, Y. Hwang, D. Kim, S. Jhung, J. Chang, I. Mulla, Mater. Chem. Phys. 92, 384 (2005)

    Article  CAS  Google Scholar 

  12. G. Guzman, B. Dahmani, J. Pütz, M. Aegerter, Thin Solid Films 502, 281 (2006)

    Article  CAS  Google Scholar 

  13. M. Abrari, M. Ghanaatshoar, H.R. Moazami, S. Saeed, H. Davarani, J. Electron. Mater. 48, 445 (2019)

    Article  CAS  Google Scholar 

  14. S. Asaithambi, P. Sakthivel, M. Karuppaiah, R. Murugan, R. Yuvakkumar, G. Ravi, J. Electron. Mater. 48, 2183 (2019)

    Article  CAS  Google Scholar 

  15. R. Alcantara, F.J. Fernandez-Madrigal, C. Perez-Vicente, J.L. Tirado, J.C. Jumas, J. Olivier-Fourcade, Chem. Mater. 12, 3044 (2000)

    Article  CAS  Google Scholar 

  16. M. Saha, A. Banerjee, A. Halder, J. Mondal, A.A. Sen, H.S. Maiti, Sens. Actuat. B Chem. 79, 192 (2001)

    Article  CAS  Google Scholar 

  17. L. Ma, Y. Ye, L. Hu, K. Zheng, T. Guo, Phys. E Low-Dimensional Syst. Nanostruct. 40, 3127 (2008)

    Article  CAS  Google Scholar 

  18. A. Ballarini, C. Ricci, S. de Miguel, O. Scelza, Catal. Today 133–135, 28 (2008)

    Article  Google Scholar 

  19. F.J. Tzompantzi, R. Gomez, G. Mendoza-Damián, A. Hernández-Gordillo, F. Tzompantzi, R. Gómez, J. Nanosci. Nanotechnol. 15, 7258 (2015)

    Article  Google Scholar 

  20. J.Q. Hu, X.L. Ma, N.G. Shang, Z.Y. Xie, N.B. Wong, C.S. Lee, S.T. Lee, J. Phys. Chem. B 106, 3823 (2002)

    Article  CAS  Google Scholar 

  21. F. Gu, S. Wang, C. Song, M. Lü, Y. Qi, G. Zhou, D. Xu, D. Yuan, Chem. Phys. Lett. 372, 451 (2003)

    Article  CAS  Google Scholar 

  22. D. Calestani, L. Lazzarini, G. Salviati, M. Zha, Cryst. Res. Technol. 40, 937 (2005)

    Article  CAS  Google Scholar 

  23. H.W. Kim, N.H. Kim, J.H. Myung, S.H. Shim, Phys. Status Solidi Appl. Mater. Sci. 202, 1758 (2005)

    Article  CAS  Google Scholar 

  24. H. He, T.H. Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou, Z.L. Wang, Nano. Micro Small 2, 116 (2006)

    CAS  Google Scholar 

  25. S. Brovelli, N. Chiodini, F. Meinardi, A. Lauria, A. Paleari, Appl. Phys. Lett. 89, 153126 (2006)

    Article  Google Scholar 

  26. X. Xiang, X.T. Zu, S. Zhu, L.M. Wang, V. Shutthanandan, P. Nachimuthu, Y. Zhang, J. Phys. D. Appl. Phys. 41, 5 (2008)

    Article  Google Scholar 

  27. Z. Heiba, M. Ahmed, S. Ahmed, J. Alloys Compd. 507, 253 (2010)

    Article  CAS  Google Scholar 

  28. E. Soleimani, N. Zamani, Acta Chim. Slov. 64, 644 (2017)

    Article  CAS  Google Scholar 

  29. M.K. Ghosh, R.K. Send, P.K. Mahapatra, B.B. Panda, Inorg. Chem. Commun. (2022). https://doi.org/10.1016/J.INOCHE.2022.109670

    Article  Google Scholar 

  30. V. Tallapally, D. Damma, S.R. Darmakkolla, Chem. Commun. 55, 1668 (2019)

    Article  CAS  Google Scholar 

  31. M.A. Sayeed, H.K. Rouf, J. Mater. Res. Technol. 15, 3409 (2021)

    Article  CAS  Google Scholar 

  32. J. Li, C. Chen, J. Li, S. Li, C. Dong, J. Mater. Sci. Mater. Electron. 31, 16539 (2020)

    Article  CAS  Google Scholar 

  33. I.S. Yahia, I.M. El Radaf, A.M. Salem, G.B. Sakr, J. Alloys Compd. 776, 1056 (2019)

    Article  CAS  Google Scholar 

  34. A. Kole, P. Kumbhakar, Results Phys. 2, 150 (2012)

    Article  Google Scholar 

  35. K. Maniammal, G. Madhu, V. Biju, Phys. E Low-Dimensional Syst. Nanostruct. 85, 214 (2017)

    Article  CAS  Google Scholar 

  36. D. Nath, F. Singh, R. Physics, Mater. Chem. Phys. 239, 122021 (2020)

    Article  CAS  Google Scholar 

  37. B. Panda, P. Mahapatra, M.K. Ghosh, J. Electron. Mater. 47, 3657 (2018)

    Article  CAS  Google Scholar 

  38. S.K. Abdel-Aal, A.S. Abdel-Rahman, J. Cryst. Growth 457, 282 (2017)

    Article  CAS  Google Scholar 

  39. S. Abdel-Aal, A. Abdel-Rahman, J. Electron. Mater. 48, 1686 (2019)

    Article  CAS  Google Scholar 

  40. N. Chakraborty, S. Das, V. Srihari, D. Mondal, D. Saha, A. Konar, S. Mishra, S. Mondal, Mater. Adv. 2, 3760 (2021)

    Article  CAS  Google Scholar 

  41. S.F. Ahmed, S. Khan, P.K. Ghosh, M.K. Mitra, K.K. Chattopadhyay, J Sol-Gel Sci Techn 39, 241 (2006)

    Article  CAS  Google Scholar 

  42. X. Li, Y. Wang, W. Liu, G. Jiang, C. Zhu, Mater. Lett. 85, 25 (2012)

    Article  CAS  Google Scholar 

  43. A.T. Hassan, E.S. Hassan, O.M. Abdulmunem, J. Mech. Behav. Mater. 30, 304 (2021)

    Article  Google Scholar 

  44. Z. Ansari, S. Ansari, T. Ko, J. Ohl, Sens. Actuat. B Chem. 87, 105 (2002)

    Article  CAS  Google Scholar 

  45. C. Ke, W. Zhu, J. Pan, Z. Yang, Curr. Appl. Phys. 11, S306 (2011)

    Article  Google Scholar 

  46. C. Kumar, N.K. Mishra, A. Kumar, M. Bhatt, P. Chaudhary, R. Singh, Appl. Nanosci. 6, 1059 (2016)

    Article  CAS  Google Scholar 

  47. W. Brzyska, Pol. J. Chem. 75, 43 (2001)

    CAS  Google Scholar 

  48. S.K. Abdel-Aal, A.S. Abdel-Rahman, W.M. Gamal, M. Abdel-Kader, H.S. Ayoub, A.F. El-Sherif, M.F. Kandeel, S. Bozhko, E.E. Yakimov, E.B. Yakimov, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 75, 880 (2019)

    Article  CAS  Google Scholar 

  49. C.G. Granqvist, Thin Solid Films 194, 730 (1990)

    Article  Google Scholar 

  50. B.S.R. Devi, R. Raveendran, A.V. Vaidyan, Pramana—J. Phys. 68, 679 (2007)

    Article  CAS  Google Scholar 

  51. M. Bagheri, M. Saremi, J. Phys. D. Appl. Phys. 37, 1248 (2004)

    Article  Google Scholar 

  52. D. Chen, L. Gao, J. Colloid Interface Sci. 279, 137 (2004)

    Article  CAS  Google Scholar 

  53. S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, New J. Chem. 38, 2462 (2014)

    Article  CAS  Google Scholar 

  54. B.B. Panda, B. Sharma, R.K. Rana, Adv. Sci. Eng. Med. 8, 333 (2016)

    Article  CAS  Google Scholar 

  55. V. Tallapally, R. Esteves, L. Nahar, I. Arachchige, Chem. Mater. 28, 5406 (2016)

    Article  CAS  Google Scholar 

  56. F. Hanini, H. Farh, M. Khechba, A. Bouabellou, S. Gattal, Defect Diffus Forum 397, 8 (2019)

    Article  Google Scholar 

  57. S.K. Tripathy, Opt. Mater. (Amst). 46, 240 (2015)

    Article  CAS  Google Scholar 

  58. J. Henry, K. Mohanraj, G. Sivakumar, J. Asian Ceram. Soc. 4, 81 (2016)

    Article  Google Scholar 

  59. N. Huse, A. Dive, K. Gattu, R. Sharma, Mater. Sci. Semicond. Process. 67, 62 (2017)

    Article  CAS  Google Scholar 

  60. F. Koohyar, J. Thermodyn. Catal. 4, 1 (2013)

    Article  Google Scholar 

  61. H.S. Bolarinwa, M.U. Onuu, A.Y. Fasasi, S.O. Alayande, L.O. Animasahun, I.O. Abdulsalami, O.G. Fadodun, I.A. Egunjobi, J. Taibah Univ. Sci. 11, 1245 (2017)

    Article  Google Scholar 

  62. R. Singh, R.K. Ulrich, Electrochem. Soc. Interface 8, 26 (1999)

    Article  CAS  Google Scholar 

  63. S. Mahato, A.K. Kar, J. Sci. Adv. Mater. Devices 2, 165 (2017)

    Article  Google Scholar 

  64. B. Aly, Phys. Scr. 95, 065807 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received to carry out the work or during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by BBP (binodgcek@gmail.com), DT (dtripathy579@gmail.com) and NM (niladriiitb@gail.com). The first draft of the manuscript was written by BBP, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Binod Bihari Panda or Niladri Maity.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The corresponding author states that there is no conflict of interest on behalf of all authors.

Ethical approval

Not applicable.

Consent to participate

All authors participate in this work.

Consent to publish

All authors agree to publish this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 95 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, B.B., Tripathy, D. & Maity, N. Band gap tailoring and photosensitivity study of Al-doped SnO2 nanocrystallites prepared by sol–gel technique. J Mater Sci: Mater Electron 33, 24559–24570 (2022). https://doi.org/10.1007/s10854-022-09167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09167-9

Navigation