Skip to main content

Advertisement

Log in

Control of oxygen vacancies and Ce+3 concentrations in doped ceria nanoparticles via the selection of lanthanide element

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The effect of lanthanides that have positive association energies with oxygen vacancies, such as samarium and neodymium, and the elements with negative association energies, such as holmium and erbium, on ionization state of cerium and, consequentially, the oxygen vacancy concentration in doped ceria nanoparticles are investigated in this article. Structural and optical characterizations of the doped and undoped ceria nanoparticles, synthesized using chemical precipitation, are carried out using transmission electron microscopy, X-ray diffractometry, optical absorption spectroscopy, and fluorescence spectroscopy. It is deduced that the negative association energy dopants decrease the conversion of Ce+4 into Ce+3 and, hence, scavenge the oxygen vacancies, evidenced by the observed increase in the allowed direct bandgap, decrease in the integrated fluorescence intensity, and increased the size of doped nanoparticles. The opposite trends are obtained when the positive association dopants are used. It is concluded that the determining factor as to whether a lanthanide dopant in ceria acts as a generator or scavenger of oxygen vacancies in ceria nanoparticles is the sign of the association energy between the element and the oxygen vacancies. The ability to tailor the ionization state of cerium and the oxygen vacancy concentration in ceria has applications in a broad range of fields, which include catalysis, biomedicine, electronics, and environmental sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B (2006) Optimization of ionic conductivity in doped ceria. Proc Natl Acad Sci USA 83:1–4. doi:10.1073/pnas.0509537103

    Google Scholar 

  • Babu S, Velez A, Wozniak K, Szydlowska J, Seal S (2007) Electron paramagnetic study on radical scavenging properties of ceria nano-particles. Chem Phys Lett 442:405–408

    Article  CAS  Google Scholar 

  • Basu S, Devi PS, Maiti HS (2004) Synthesis and properties of nanocrystalline ceria powders. J Mater Res 19(11):3162–3171. doi:10.1557/JMR.2004.0442

    Article  CAS  Google Scholar 

  • Chen H, Chang H (2004) Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloid Surf A 242:61–69. doi:10.1016/j.colsurfa.2004.04.056

    Article  CAS  Google Scholar 

  • Chui CO, Kim H, McIntyre PC, Saraswat KC (2004) Atomic layer deposition of high-κ dielectric for germanium MOS applications—substrate surface preparation. IEEE Elect Device Lett 25(5):274–276

    Article  CAS  Google Scholar 

  • Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ (2007) Auto-catalytic ceria nanoparticles offer neuro-protection to adult rat spinal cord neurons. Biomaterials 28:1918–1925

    Article  CAS  Google Scholar 

  • Deshpande S, Patil S, Kuchibhatla S, Seal S (2005) Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett 87:133113. doi:10.1063/1.2061873

    Article  Google Scholar 

  • Dhannia T, Jayalekshmi S, Kumar MCS, Rao TP, Bose AC (2009) Effect of aluminum doping and annealing on structural and optical properties of cerium oxide nanocrystals. J Phys Chem Solids 70:1443–1447. doi:10.1016/j.jpcs.2009.09.001

    Article  CAS  Google Scholar 

  • Dikmen S, Shuk P, Greenblatt M (1999) Hydrothermal synthesis and properties of Ce1−x La x O2 solid solutions. Solid State Ion 126:89–95

    Article  CAS  Google Scholar 

  • Elyassi B, Rajabbeigi N, Khodadadi A, Mohajerzadeh SS, Sahimi M (2004) An yttria-doped ceria-based oxygen sensor with solid-state reference. Orig Res Art Sens Act B 103(1):178–183

    Google Scholar 

  • Gerhardt R, Lee WK, Nowick AS (1987) Anelastic and dielectric relaxation of scandia-doped ceria. J Phys Chem Solids 48(6):563–569. doi:0022/369718

    Article  CAS  Google Scholar 

  • Guo H (2007) Green and red upconversion luminescence in CeO2:Er+3 powders produced by 785 nm laser. J Solid State Chem 180:127–131. doi:10.1016/j.jssc.2006.10.003

    Article  CAS  Google Scholar 

  • Lawrence NJ, Jiang K, Cheung CL (2011) Formation of a porous cerium oxide membrane by anodization. Chem Commun 47:2703–2705

    Article  CAS  Google Scholar 

  • Nakayama M, Martin M (2009) First-principles study on defect chemistry and migration of oxide ions in ceria doped with rare-earth cations. Phys Chem Chem Phys 11:3241–3249

    Article  CAS  Google Scholar 

  • Oh M, Nho J, Cho S, Lee J, Sing R (2011) Polishing behaviours of ceria abrasives on silicon dioxide and silicon nitride. CMP J Powder Tech 206:239–245

    Article  CAS  Google Scholar 

  • Pankove J (1971) Optical processes in semiconductors. Dover Publications Inc., New York

    Google Scholar 

  • Patsalas P, Logothetidis S, Sygellou L, Kennou S (2003) Structure-dependent electronic properties of nanocrystalline cerium oxide films. Phys Rev B 68(3):035104–035117

    Article  Google Scholar 

  • Qiu L, Liu F, Zhao L, Ma Y, Ya J (2006) Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria powder. Appl Surf Sci 25:4931–4935

    Article  Google Scholar 

  • Shukla A, Mukherjee S, Sharma S, Agrawal V, Kishan K, Guptasarma P (2004) A novel UV laser-induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding. Arch Biochem Biophys 428(2):144–153

    Article  CAS  Google Scholar 

  • Steel B, Heinzel B (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  Google Scholar 

  • Suda E, Pacaud B, Mori M (2006) Sintering characteristics, electrical conductivity and thermal properties of La-doped ceria powders. J All Comp 408:1161–1164

    Article  Google Scholar 

  • Trovarelli A (2005) Catalysis by ceria and related materials, 2nd edn. Imperial College Press, London

    Google Scholar 

  • Tsunekawa S, Fukuda T, Kasuya A (2000) Blue shift in ultraviolet absorption spectra of monodisperse CeO2−x nanoparticles. J Appl Phys 87(3):1318–1321

    Article  CAS  Google Scholar 

  • Wei X, Pan W, Cheng L, Li B (2009) Atomistic calculation of association energy in doped ceria. Solid State Ion 180:13–17

    Article  CAS  Google Scholar 

  • Yamamura H, Takeda S, Kakinuma K (2007) Dielectric relaxations in the Ce1−x Nd x O2. Solid State Ion 178:1059–1064

    Article  CAS  Google Scholar 

  • Yin L, Wang Y, Pang G, Koltypin Y, Gedanken A (2002) Sonochemical synthesis of cerium oxide nanoparticles—effect of additives and quantum size effect. J Colloid Interface Sci 246:78–84

    Article  CAS  Google Scholar 

  • Zeng S, Wang L, Gong M, Chen Y (2010) Catalytic properties of Ni/ceria–yttria electrode materials for partial oxidation of methane. J Nat Gas Chem 19:509–514

    Article  CAS  Google Scholar 

  • Zholobak NM, Ivanov VK, Shcherbakov AB, Shaporev AS, Polezhaeva OS, Baranchikov AY, Spivak NY, Tretyakov YD (2011) UV-shielding property, photocatalytic activity and photocytotoxicity ceria colloid solutions. J Photochem Photobiol B 102:32–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded in part by a NSF STTR Phase I grant with MW Photonics (award# 0930364). Shehata was funded through Virginia Tech Middle East and North Africa (VT-MENA) program. The authors thank Dr. Niven Monsegue, Dr. Jerry Hunter, and Andrew Giordani from the Nanotechnology Characterization and Fabrication Laboratory, Institute of Critical Technologies and Applied Science at Virginia Tech for their training and assistance with the TEM and XPS measurements. Also, the authors appreciate the support of Mr. Don Leber, manager of the Micron Technology Semiconductor Processing Laboratory at Virginia Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Shehata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shehata, N., Meehan, K., Hudait, M. et al. Control of oxygen vacancies and Ce+3 concentrations in doped ceria nanoparticles via the selection of lanthanide element. J Nanopart Res 14, 1173 (2012). https://doi.org/10.1007/s11051-012-1173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1173-1

Keywords

Navigation