Skip to main content
Log in

Structural and optical properties of Tb3+ doped Y2O3 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Y2O3 luminescent nanoparticles were synthesized via new protocol of sol–gel method combined with a furnace firing in air, using metal salt as precursor and an epoxide for hydrolysis. Effects of rare earth (Tb3+) doping on structural and luminescence properties of the produced nanophosphors have been investigated. The obtained nanopowders were characterized by various techniques such as thermogravimetric analyser (TGA), differential thermal analyser (DTA), transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence spectroscopy (PL) and photoluminescence excitation (PLE). After thermal treatment at different temperatures in air, the powder with an average particle size of 50 nm presents a green luminescence band in the visible range (544 nm). The intensity of the obtained PL band increases with of thermal treatment temperature and the PLE spectra present an intensive band in UV-range corresponding to Y2O3 band-gap. Different origins of this evolution will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, Science 273, 1185–1189 (1996)

    Article  Google Scholar 

  2. T.K. Anh, L. Quoc Minh, N. Vu, T. Thu Huong, N. Thanh Huong, C. Barthou, W. Strek, J. Lumin. 102, 391–394 (2003)

    Article  Google Scholar 

  3. A. Shalav, B.S. Richards, T. Trupke, K.W. Kramer, H.U. Gudel. Appl. Phys. Lett. 86, 013505 (2005)

    Article  Google Scholar 

  4. F. Wang, X. Liu, Chem. Soc. Rev. 38, 976–989 (2009)

    Article  Google Scholar 

  5. S.A. Hilderbrand, F. Shao, C. Salthouse, U. Mahmood, R. Weissleder, Chem. Commun. 28, 4188–4190 (2009)

    Article  Google Scholar 

  6. G. Jia, K. Liu, Y. Zheng, Y. Song, M. Yang, H. You, J. Phys. Chem. C. 113, 6050–6055 (2009)

    Article  Google Scholar 

  7. P. Li, Q. Peng, Y. Li, Adv. Mater. 21, 1945–1948 (2009)

    Article  Google Scholar 

  8. G. Jia, M. Yang, Y. Song, H. You, H. Zhang, Cryst. Growth Des. 9, 301–307 (2009)

    Article  Google Scholar 

  9. G. Jia, H. You, K. Liu, Y. Zheng, N. Guo, H. Zhang, Langmuir 26, 5122–5128 (2009)

    Article  Google Scholar 

  10. M. Chandrasekhar, D.V. Sunitha, N. Dhananjaya, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, C. Shivakumara, R.P.S. Chakradhar, J. Lumin., 132, (2012) 1798–1806

    Article  Google Scholar 

  11. S.C. Ramachandra Naik, H. Prashantha, S.C. Nagabhushana, B.M. Sharma, H.P. Nagabhushana, H.B. Nagaswarupa, Premkumar. Sens. Actuators B 195, 140–149 (2014)

    Article  Google Scholar 

  12. H.B. Premkumar, H. Nagabhushana, S.C. Sharma, S.C. Prashantha, H.P. Nagaswarupa, B.M. Nagabhushana, R.P.S. Chakradhar. J. Alloys Compd. 601, 75–84 (2014)

    Article  Google Scholar 

  13. K.A. Wickersheim, R.A. Lefever, J. Opt. Soc. Am. 51, 1147 (1961)

    Article  Google Scholar 

  14. Daisuke Matsuura, Appl. Phys. Lett. 81, 4526 (2002)

    Article  Google Scholar 

  15. J.C. Park, H.K. Moon, D.K. Kim, S.H. Byeon, B.C. Kim, K.S. Suh. Appl. Phys. Lett. 77, 2162–2164 (2000)

    Article  Google Scholar 

  16. Y.C. Kang, S.B. Park, I.W. Lenggoroand, K. Okuyama, J. Phys. Chem. Solids 60, 379–384 (1999)

    Article  Google Scholar 

  17. R. Withnall, M.I. Martinez-Rubio, G.R. Fern, T.G. Ireland, J. Silver, J. Opt. A: Pure Appl. Opt., 5, S81–S85 (2003)

    Article  Google Scholar 

  18. B. Mercier, C. Dujardin, G. Ledoux, C. Louis, O. Tillement J. Appl. Phys. 96, 650–653 (2004)

    Article  Google Scholar 

  19. Q. Wang, J. Guo, W. Jia, B. Liu, J. Zhang, J. Alloys Compd. 542, 1–10 (2012)

    Article  Google Scholar 

  20. A.P. de Moura, L.H. de Oliveira, E.C. Paris, M.S. Li, J. Andres, J.A. Varela, E. Longo, I.L.V. Rosa, J. Fluoresc. 21, 1431–1438. (2011)

    Article  Google Scholar 

  21. J.G. Li, T. Ishigaki, J. Sol. State Chem. 196, 58–62. (2012)

    Article  Google Scholar 

  22. P. Psuja, W. Strek, I. Yelkin, J. Nanopart. Res 16, 2176–2182 (2014)

    Article  Google Scholar 

  23. M.K. Devaraju, S. Yin, T. Sato, Inorg. Chem. 50, 4698–4704 (2011)

    Article  Google Scholar 

  24. V. Dubey, J. Kaur, S. Agrawal, Res. Chem. Intermed. 41, 4727–4739 (2015)

    Article  Google Scholar 

  25. G.A. Sotiriou, M. Schneider, S.E. Pratsinis, J. Phys. Chem. C 116, 4493–4499 (2012)

    Article  Google Scholar 

  26. V.B. Taxak, S.P. Khatkar, S.D. Han, R. Kumar, M. Kumar, J. Alloys Compd. 469, 224–228 (2009)

    Article  Google Scholar 

  27. J. El Ghoul, C. Barthou, L. El Mir, Superlattices Microstruct. 51, 942–951 (2012)

    Article  Google Scholar 

  28. S. Ray, A. Patra, P. Pramanik, Opt. Mater. 30, 608–616 (2007)

    Article  Google Scholar 

  29. J. El Ghoul, C. Barthou, L. El Mir, Phys. E, 44, 1910–1915 (2012)

    Article  Google Scholar 

  30. L. Ji, N. Chen, G. Du, M. Yan, W. Shi, Ceram. Inter., 40, 3117–3122 (2014)

    Article  Google Scholar 

  31. J.H. Park, N.G. Back, K.S. Hong, C.S. Kim, D.H. Yoo, M.G. Kwak, J.I. Han, J.H. Sung, B.K. Moon, H.J. Seo, J. B.C. Choi, Korean Phys. Soc. 47, S268–S371 (2005)

    Google Scholar 

  32. J.Q. Xu, S.J. Xiong, X.L. Wu, T.H. Li, J.C. Shen, P.K. Chu, J. Appl. Phys 114, 093512 (2013)

    Article  Google Scholar 

  33. M.V. Abrashev, N.D. Todorov, J. Geshev, J. Appl. Phys 116, 103508 (2014)

    Article  Google Scholar 

  34. K.K. Nanda, S.N. Sahu, S.N. Behera, Phys. Rev. A 66, 013208 (2002)

    Article  Google Scholar 

  35. F.S. Kao, T.M. Chen, J. Lumin. 96, 261. (2002)

    Article  Google Scholar 

  36. Y.S. Vidya, K. Gurushantha, H. Nagabhushana, S.C. Sharma, K.S. Anantharaju, C. Shivakumara, D. Suresh, H.P. Nagaswarupa, S.C. Prashantha, M.R. Anilkumar, J. Alloys Compd. 622, 86–96 (2015)

    Article  Google Scholar 

  37. A Pandey, V.K. Rai, K. Kumar, Spectrochim. Acta Part A 118, 619–623 (2014)

    Article  Google Scholar 

  38. M.A. Flores-Gonzalez, G. Ledoux, S. Roux, K. Lebbou, P. Perriat, O. Tillement. J. Solid State Chem 178, 989–997 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. El Ghoul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Ghoul, J., El Mir, L. Structural and optical properties of Tb3+ doped Y2O3 nanoparticles. J Mater Sci: Mater Electron 28, 9066–9071 (2017). https://doi.org/10.1007/s10854-017-6639-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6639-6

Keywords

Navigation