Skip to main content
Log in

Optimal time-varying P-controller for a class of uncertain nonlinear systems

  • Control Theory
  • Published:
International Journal of Control, Automation and Systems Aims and scope Submit manuscript

Abstract

In this manuscript, an optimal time-varying P-controller is presented for a class of continuous-time underactuated nonlinear systems in the presence of process noise associated with systems’ inputs. This is a state feedback control strategy where the optimization is performed on a time-varying feedback operator (herein called the feedback control gain). The main goal of the current manuscript is to provide a framework for multi-input multi-output nonlinear systems which yields a satisfactory tracking performance based on the optimal time-varying feedback control gain. Unlike other feedback control techniques that perform dynamic linearization of system models, the proposed time-varying Pcontroller provides the full-state feedback control to the original nonlinear system model. Hence, this P-controller guarantees global asymptotic state-tracking. Furthermore, the bounded system’s process noise is taken into consideration to measure the controller’s robustness. The proposed P-controller is tested for its nonlinear trajectory tracking and fixed-point stabilization capabilities with two nonholonomic systems in the presence of input noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Luo, Y.-C. Chu, and K.-V. Ling, “Inverse optimal adaptive control for attitude tracking of spacecraft,” IEEE Trans. on Automatic Control, vol. 50, no. 11, pp. 1639–1654, November 2005.

    MathSciNet  Google Scholar 

  2. I. Cervantes and J. Alvarez-Ramirez, “On the PID tracking control of robot manipulators,” Systems and Control Letters, vol. 42, no. 1, pp. 37–46, January 2001.

    Article  MATH  MathSciNet  Google Scholar 

  3. C.-S. Kim, K.-S. Hong, and M.-K. Kim, “Nonlinear robust control of a hydraulic elevator: experiment based modeling and two-stage Lyapunov redesign,” Control Engineering Practice, vol. 13, no. 6, pp. 789–803, June 2005.

    Article  Google Scholar 

  4. D. Q. Wei, X. S. Luo, B. Zhang, and Y. H. Qin, “Controlling chaos in space-clamped FitzHugh-Nagumo neuron by adaptive passive method,” Nonlinear Analysis: Real World Applications, vol. 11, no. 3, pp. 1752–1759, June 2010.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Rehan, K.-S. Hong, and S. S. Ge, “Stabilization and tracking control for a class of nonlinear systems,” Nonlinear Analysis: RealWorld Applications, vol. 12, no. 3, no. 3, pp. 1786–1796, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. S. Keerthi and E. G. Gilbert, “Optimal infinitehorizon feedback laws for a general class of constrained discrete-time systems: stability and moving horizon approximations,” Journal of Optimization Theory and App., vol. 57, no. 2, pp. 265–93, May 1988.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Tarin, B. Tibken, H. Brugger, and E. Hofer, “Optimal feedback position control for an autonomous mobile robot,” Proc. of the American Control Conference, vol. 3, pp. 1491–1492, vol. 3, 2000.

    Google Scholar 

  8. P. Soueres and J. D. Boissonnat, “Optimal trajectories for nonholonomic mobile robots,” in Robot Motion Planning and Control (J.-P. Laumond, ed.), vol. 229 of Lec. Notes in Control and Info. Sciences, ch. 3, pp. 93–169, Springer, 2000.

    Google Scholar 

  9. L. Sheng, M. Guoliang, and H. Weili, “Stabilization and optimal control of nonholonomic mobile robot,” Proc. of Control, Automation, Robotics and Vision Conference, vol. 2, pp. 1427–1430, December 2004.

    Google Scholar 

  10. F. Allgower, T. A. Badgwell, S. J. Qin, J. B. Rawlings, and S. J. Wright, “Nonlinear predictive control and moving horizon estimation-an introductory overview,” Advances in Control, Highlights of ECC’99, pp. 391–449, Springer New York, 1999.

    Chapter  Google Scholar 

  11. D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained model predictive control: stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–814, June 2000.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. de Oliveira Kothare and M. Morari, “Contractive model predictive control for constrained nonlinear systems,” IEEE Trans. on Automatic Control, vol. 45, no. 6, pp. 1053–1071, June 2000.

    Article  MATH  Google Scholar 

  13. M. Diehl, H. Ferreau, and N. Haverbeke, “Efficient numerical methods for nonlinear MPC and moving horizon estimation,” in Nonlinear Model Predictive Control-Towards New Challenging Applications, pp. 391–417, Springer, 2000.

    Google Scholar 

  14. J. Rawlings and D. Mayne, Model Predictive Control: Theory and Design, Nob Hill Publishing Madison, WI, 2009.

    Google Scholar 

  15. K. Graichen and A. Kugi, “Stability and incremental improvement of suboptimal MPC without terminal constraints,” IEEE Trans. on Automatic Control, vol. 55, no. 11, pp. 2576–2580, November 2010.

    Article  MathSciNet  Google Scholar 

  16. F. A. C. C. Fontes, “Discontinuous feedbacks, discontinuous optimal controls, and continuous-time model predictive control,” International Journal of Robust and Nonlinear Control, vol. 13, no. 3, pp. 191–209, March 2003.

    Article  MATH  MathSciNet  Google Scholar 

  17. F. A. C. C. Fontes and L. Magni, “Min-max model predictive control of nonlinear systems using discontinuous feedbacks,” IEEE Trans. on Automatic Control, vol. 48, no. 10, pp. 1750–1755, October 2003.

    Article  MathSciNet  Google Scholar 

  18. R. Rajamani, “Observers for Lipschitz nonlinear systems,” IEEE Trans. on Automatic Control, vol. 43, no. 3, pp. 397–401, March 1998.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Sun and G. Liu, “State feedback and output feedback control of a class of nonlinear systems with delayed measurements,” Nonlinear Analysis, vol. 67, no. 5, pp. 1623–1636, September 2007.

    Article  MATH  MathSciNet  Google Scholar 

  20. V. F. Sokolov, “Adaptive suboptimal tracking for a first-order object under Lipschitz uncertainty,” Automation and Remote Control, vol. 64, no. 3, pp. 457–67, March 2003.

    Article  MATH  MathSciNet  Google Scholar 

  21. V. Sokolov, “Adaptive suboptimal tracking for the first-order plant with Lipschitz uncertainty,” IEEE Trans. on Automatic Control, vol. 48, no. 4, pp. 607–612, April 2003.

    Article  Google Scholar 

  22. S. Liuzzo, R. Marino, and P. Tomei, “Adaptive learning control of nonlinear systems by output error feedback,” IEEE Trans. on Automatic Control, vol. 52, no. 7, pp. 1232–1248, July 2007.

    Article  MathSciNet  Google Scholar 

  23. Z. K. Nagy and R. D. Braatz, “Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis,” Journal of Process Control, vol. 14, no. 1, pp. 411–422, July 2004.

    Article  Google Scholar 

  24. Y. J. Wang and J. B. Rawlings, “A new robust model predictive control method I: theory and computation,” Journal of Process Control, vol. 14, no. 3, pp. 231–247, November 2004.

    Article  Google Scholar 

  25. A. Ailon and I. Zohar, “Control strategies for driving a group of nonholonomic kinematic mobile robots in formation along a time-parameterized path,” IEEE/ASME Trans. on Mechatronics, vol. 17, no. 2, pp. 326–336, April 2012.

    Article  Google Scholar 

  26. D. Chwa, “Tracking control of differential-drive wheeled mobile robots using a backstepping-like feedback linearization,” IEEE Trans. on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 40, no. 6, pp. 1285–1295, November 2010.

    Article  Google Scholar 

  27. Z. Li, K. Yang, S. Bogdan, and B. Xu, “On motion optimization of robotic manipulators with strong nonlinear dynamic coupling using support area level set algorithm,” International Journal of Control, Automation, and Systems, vol. 11, no. 6, pp. 1266–1275, December 2013.

    Article  Google Scholar 

  28. D. Lee, H. J. Kim, and S. Sastry, “Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter,” International Journal of Control, Automation, and Systems, vol. 7, no. 3, no. 3, pp. 419–428, 2009.

    Article  Google Scholar 

  29. S.-Q. Liu, J.-G. Lu, and Z.-L. Jing, “Trajectory linearization based output tracking control of an unmanned tandem helicopter with variance constraints,” International Journal of Control, Automation, and Systems, vol. 8, no. 6, pp. 1257–1270, May 2010.

    Article  Google Scholar 

  30. B. Zhu and W. Huo, “Trajectory linearization control for a miniature unmanned helicopter,” International Journal of Control, Automation, and Systems, vol. 11, no. 2, pp. 286–295, December 2013.

    Article  Google Scholar 

  31. H. L. Royden and P. M. Fitzpatrick, Real Analysis, 4th edition, Pearson Education Inc. Boston, 2010.

    MATH  Google Scholar 

  32. H. K. Khalil, Nonlinear Systems, 3rd edition, Addison-Wesley, Pearson Education Limited Upper Saddle River New Jersey, 2002.

    MATH  Google Scholar 

  33. N. U. Ahmed and M. S. Miah, “Optimal feedback control law for a class of partially observed uncertain dynamic systems: a min-max problem,” Dynamic Systems and Applications, vol. 20, no. 1, no. 1, pp. 149–167, 2011.

    MATH  MathSciNet  Google Scholar 

  34. N. U. Ahmed, Dynamic Systems and Control with Applications, World Scientific New Jersey, 2006.

    Book  MATH  Google Scholar 

  35. A. D. Luca, G. Oriolo, and C. Samson, “Feedback control of a nonholonomic car-like robot,” in Robot Motion Planning and Control (J.-P. Laumond, ed.), vol. 229 of Lecture Notes in Control and Information Sciences, ch. 4, pp. 170–253, Springer, 2000.

    Google Scholar 

  36. Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking control method for an autonomous mobile robot,” Proc. of IEEE Intl. Conf. on Robotics and Automation, Cincinnati, USA, pp. 384–389, 1990.

    Chapter  Google Scholar 

  37. D. Gu and H. Hu, “Receding horizon tracking control of wheeled mobile robots,” IEEE Trans. on Control Systems Technology, vol. 14, no. 4, pp. 743–749, July 2006.

    Article  Google Scholar 

  38. M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control, John Wiley & Sons New York, 2006.

    Google Scholar 

  39. F. Rehman, M. M. Ahmed, N. M. Memon, and M. Riaz, “Time-varying stabilizing control for a hopping robot model during the flight phase,” Proc. of International Multitopic Conference, pp. 400–403, December 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Suruz Miah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suruz Miah, M., Gueaieb, W. Optimal time-varying P-controller for a class of uncertain nonlinear systems. Int. J. Control Autom. Syst. 12, 722–732 (2014). https://doi.org/10.1007/s12555-013-0234-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12555-013-0234-2

Keywords

Navigation