Skip to main content
Log in

Low-complexity robust tracking of high-order nonlinear systems with application to underactuated mechanical dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a low-complexity design approach with predefined transient and steady-state tracking performance for global practical tracking of uncertain high-order nonlinear systems. It is assumed that all nonlinearities and their bounding functions are unknown and the reference signal is time varying. A simple output tracking scheme consisting of nonlinearly transformed errors and positive design parameters is presented in the presence of virtual and actual control variables with high powers where the error transformation technique using time-varying performance functions is employed. Contrary to the existing results using known nonlinear bounding functions of model nonlinearities, the proposed tracking scheme can be implemented without using nonlinear bounding functions (i.e., the feedback domination design), any adaptive and function approximation techniques for estimating unknown nonlinearities. It is shown that the tracking performance of the proposed control system is ensured within preassigned bounds, regardless of high-power virtual and actual control variables. The motion tracking problem of an underactuated unstable mechanical system with unknown model parameters and nonlinearities is considered as a practical application, and simulation results are provided to show the effectiveness of the proposed theoretical result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Qian, C.J., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46, 1061–1079 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lin, W., Pongvuthithum, R.: Nonsmooth adaptive stabilization of cascade systems with nonlinear parameterization via partial-state feedback. IEEE Trans. Autom. Control 48(10), 1809–1816 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Polendo, J., Qian, C.J.: A generalized homogeneous domination approach for global stabilization of inherently nonlinear systems via output feedback. Int. J. Robust Nonlinear Control 17, 605–629 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, W.Q., Xie, X.J., Zhang, S.Y.: Output-feedback stabilization of stochastic high-order nonlinear systems under weaker conditions. SIAM J. Control Optim. 49, 1262–1282 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fu, J., Ma, R.C., Chai, T.Y.: Global finite-time stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers. Automatica 54, 360–373 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sun, Z.Y., Li, T., Yang, S.H.: A unified time-varying feedback approach and its applications in adaptive stabilization of high-order uncertain nonlinear systems. Automatica 70, 249–257 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lin, W., Qian, C.J.: Adaptive control of nonlinearly parameterized systems: the smooth feedback case. IEEE Trans. Autom. Control 47(8), 1249–1266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tian, J., Xie, X.J.: Adaptive state-feedback stabilization for high-order stochastic nonlinear systems with uncertain control coefficients. Int. J. Control 80(9), 1503–1516 (2007)

    Article  MATH  Google Scholar 

  9. Xie, X.J., Tian, J.: Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization. Automatica 45(1), 126–133 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lv, L.N., Sun, Z.Y., Xie, X.J.: Adaptive control for high-order timedelay uncertain nonlinear system and application to chemical reactor system. Int. J. Adapt. Control Signal Process. 29, 224–241 (2015)

    Article  MATH  Google Scholar 

  11. Sun, Z.Y., Zhang, C.H., Wang, Z.: Adaptive disturbance attenuation for generailized high-order uncertain nonlinear systems. Automatica 80, 102–109 (2017)

    Article  MATH  Google Scholar 

  12. Lin, W., Qian, C.: Robust regulation of a chain of power integrators perturbed by a lower-triangular vector field. Int. J. Robust Nonlinear Control 10(5), 397–421 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Qian, C., Lin, W.: Practical output tracking of nonlinear systems with uncontrollable unstable linearization. IEEE Trans. Autom. Control 47(1), 21–36 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhao, X., Shi, P., Zheng, X., Zhang, J.: Intelligent tracking control for a class of uncertain high-order nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 27(9), 1976–1982 (2016)

    Article  MathSciNet  Google Scholar 

  15. Zhou, Q., Li, H., Wu, C., Wang, L., Ahn, C.K.: Adaptive fuzzy control of nonlinear systems with unmodeled dynamics and input saturation using small-gain approach. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 1979–1989 (2017)

    Article  Google Scholar 

  16. Li, Y., Tong, S., Liu, L., Feng, G.: Adaptive output-feedback control design with prescribed performance for switched nonlinear systems. Automatica 80, 225–231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Y., Tong, S.: Command-filtered-based fuzzy adaptive control design for MIMO switched nonstrict-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 25(3), 668–681 (2017)

    Article  Google Scholar 

  18. Tong, S., Li, Y., Sui, S.: Adaptive fuzzy tracking control design for SISO uncertain nonstrict feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 24(6), 1441–1454 (2016)

    Article  Google Scholar 

  19. Tong, S., Li, Y., Sui, S.: Adaptive fuzzy output feedback control for switched nonstrict-feedback nonlinear systems with input nonlinearities. IEEE Trans. Fuzzy Syst. 24(6), 1426–1440 (2016)

    Article  Google Scholar 

  20. Bechlioulis, C.P., Rovithakis, G.A.: A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. Automatica 50, 1217–1226 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Theodorakopoulos, A., Rovithakis, G.A.: Guaranteeing preselected tracking quality for uncertain strict-feedback systems with deadzone input nonlinearity and disturbances via low-complexity control. Automatica 54, 135–145 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xie, X.J., Duan, N.: Output tracking of high-order stochastic nonlinear systems with application to benchmark mechanical system. IEEE Trans. Autom. Control. 55(5), 1197–1202 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, Hoboken (1995)

    MATH  Google Scholar 

  24. Ge, S.S., Wang, J.: Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems. IEEE Trans. Neural Netw. 13, 1409–1419 (2002)

    Article  Google Scholar 

  25. Li, P., Yang, G.H.: A novel adaptive control approach for nonlinear strict-feedback systems using nonlinearly parameterised fuzzy approximators. Int. J. Syst. Sci. 42, 517–527 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, J., Zheng, Z., Li, P.: Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation. IEEE Trans. Cybern. 45, 728–741 (2015)

    Article  Google Scholar 

  27. Wang, D., Huang, J.: Neural network based adaptive dynamic surface control for nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16, 195–202 (2005)

    Article  Google Scholar 

  28. Wu, J., Li, J.: Adaptive fuzzy control for perturbed strict-feedback nonlinear systems with predefiend tracking accuracy. Nonlinear Dyn. 83, 1185–1197 (2016)

    Article  MATH  Google Scholar 

  29. Zhang, T., Ge, S.S., Hang, C.C.: Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. Automatica 36, 1835–1846 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yip, P.P., Hedrick, J.K.: Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems. Int. J. Control 71, 959–979 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sontag, E.D.: Mathematical Control Theory. Springer, London (1998)

    Book  MATH  Google Scholar 

  32. Nussbaum, R.D.: Some remarks on a conjecture in parameter adaptive control. Syst. Control Lett. 3(5), 243–246 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ge, S.S., Hong, F., Lee, T.H.: Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(1), 499–516 (2004)

    Article  Google Scholar 

  34. Rui, C., Reyhanoglu, M., Kolmanovsky, I., Cho, S., McClamroch, N.H.: Nonsmooth stabilization of an underactuated unstable two degrees of freedom mechanical system. In: Proceedings od 36th IEEE Conference on Decision Control, San Diego, CA, pp. 3998–4003 (1997)

  35. Rehan, M., Jameel, A., Ahn, C.K.: Distributed consensus control of one-sided Lipschitz nonlinear multi-agent systems. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2667701

    Google Scholar 

  36. Agha, R., Rehan, M., Ahn, C.K., Mustafa, G., Ahmad, S.: Adaptive distributed consensus control of one-sided Lipschitz nonlinear multi-agents. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2764521

    Google Scholar 

  37. Wu, Z.G., Shi, P., Su, H., Chu, J.: Asynchronous \(l_{2}-l_{\infty }\) filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities. Automatica 50(1), 180–186 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wu, Z.G., Dong, S., Shi, P., Su, H., Huang, T., Lu, R.: Fuzzy-model-based nonfragile guaranteed cost control of nonlinear Markov jump systems. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2388–2397 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Human Resources Development (No. 20174030201810) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy, by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03931312), and by the Ministry of Science and ICT (MSIT), Korea, under the Information Technology Research Center (ITRC) support Program (IITP-2017-2014-0-00636) supervised by the Institute for Information and communications Technology Promotion (IITP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Jin Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, S.J. Low-complexity robust tracking of high-order nonlinear systems with application to underactuated mechanical dynamics. Nonlinear Dyn 91, 1627–1637 (2018). https://doi.org/10.1007/s11071-017-3969-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3969-0

Keywords

Navigation