Skip to main content
Log in

Robust State Feedback-Based Design of PID Controllers for High-Order Systems with Time-Delay and Parametric Uncertainties

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper presents a general framework for designing robust Proportional-Integral and Proportional-Integral-Derivative controllers for time-delay systems. The proposed approach considers systems of any order, with parametric uncertainties, unknown time-delay, and possibly unstable. The main appeal is to get a polytopic state-space realization of the uncertain transfer function where the control design is rewritten as a convex state feedback problem that can be solved by new linear matrix inequalities based on a parameter-dependent Lyapunov–Krasovskii type functional. For performance criteria, we consider robust pole placement for minimum decay rate and \(\mathcal {H}_{\infty }~\)guaranteed cost. We also include in the design a first-order filter in the derivative action. Numerical examples illustrate the effectiveness of the proposed approach for uncertain and unstable systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The coefficients \(a_{n}\) and \(b_{m+1}\) are only inserted to clarify the structure of the matrices.

References

  • Agulhari, C. M., Felipe, A., Oliveira, R. C. L. F., & Peres, P. L. D. (2019). Algorithm 998: The Robust LMI Parser–A toolbox to construct LMI conditions for uncertain systems. ACM Transactions on Mathematical Software, 45(3), 36:1-36:25.

    Article  MathSciNet  Google Scholar 

  • Almodaresi, E., Bozorg, M., & Taghirad, H. D. (2016). Stability domains of the delay and PID coefficients for general time-delay systems. International Journal of Control, 89(4), 783–792.

    Article  MathSciNet  Google Scholar 

  • Åström, K. J., & Hägglund, T. (1995). PID controllers: Theory, design, and tuning. Instrument Society of America.

  • Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. SIAM studies in applied mathematics. SIAM.

  • Boyd, S. P., & Barratt, C. H. (1991). Linear control design: Limits of performance. Prentice Hall.

  • Chu, W. J. M. J. (2006). D-stability for linear continuous-time systems with multiple time delays. Automatica, 42(9), 1589–1592.

    Article  MathSciNet  Google Scholar 

  • Firouzbahrami, M., & Nobakhti, A. (2017). Reliable computation of PID gain space for general second-order time-delay systems. International Journal of Control, 90(10), 2124–2136.

    Article  MathSciNet  Google Scholar 

  • Ge, M., Chiu, M., & Wang, Q. (2002). Robust PID controller design via LMI approach. Journal of Process Control, 21, 3–13.

    Article  Google Scholar 

  • Gonçalves, E. N., Palhares, R. M., & Takahashi, R. H. C. (2006). \(H_2\) / \(H_{\infty }\) robust PID synthesis for uncertain systems. In Proceedings of the 45th IEEE conference on decision and control (pp. 4375–4380).

  • Gonçalves, E. N., Palhares, R. M., & Takahashi, R. H. (2008). A novel approach for \({H}_2/ {H}_{\infty }\) robust PID synthesis for uncertain systems. Journal of Process Control, 18(1), 19–26.

    Article  Google Scholar 

  • Grimholt, C., & Skogestad, S. (2018). Optimal PI and PID control of first-order plus delay processes and evaluation of the original and improved SIMC rules. Journal of Process Control, 70, 36–46.

    Article  Google Scholar 

  • Gu, K. (2000). An integral inequality in the stability problem of time-delay systems. In Proceedings of the 39th IEEE conference on decision and control (Vol. 3, pp. 2805–2810).

  • Lin, C., Wang, Q. G., & Lee, T. H. (2004). An improvement on multivariable PID controller design via iterative LMI approach. Automatica, 40(3), 519–525.

    Article  MathSciNet  Google Scholar 

  • Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the 2004 IEEE international symposium on computer aided control systems design, Taipei, Taiwan (pp. 284–289). Retrieved from http://yalmip.github.io.

  • Malwatkar, G., Sonawane, S., & Waghmare, L. (2009). Tuning PID controllers for higher-order oscillatory systems with improved performance. ISA Transactions, 48(3), 347–353.

    Article  Google Scholar 

  • Mozelli, L. A., & Souza, F. O. (2013). PID tuning under uncertain conditions: Robust LMI design for second-order plus time-delay transfer functions. In 11th Workshop on time-delay systems, Grenoble, France (pp. 120–125).

  • Oliveira, R. C. L. F., Bliman, P. A., & Peres, P. L. D. (2009). Selective gain-scheduling for continuous-time linear systems with parameters in multi-simplex. In Proceedings of the 2009 European control conference, Budapest, Hungary (pp. 213–218).

  • de Oliveira, Souza F., Mozelli, L. A., de Oliveira, M. C., & Palhares, R. M. (2016). LMI design method for networked-based PID control. International Journal of Control, 89(10), 1962–1971.

    Article  MathSciNet  Google Scholar 

  • Parada, M., Sbarbaro, D., Borges, R. A., & Peres, P. L. D. (2017). Robust PI and PID design for first- and second-order processes with zeros, time-delay and structured uncertainties. International Journal of Systems Science, 48(1), 95–106.

    Article  MathSciNet  Google Scholar 

  • Rico, J. E. N., & Guzmán, J. L. (2012). Unified PID tuning approach for stable, integrative and unstable dead-time processes. IFAC Proceedings Volumes, 45(3), 35–40. In 2nd IFAC conference on advances in PID control.

  • Skelton, R. E., Iwasaki, T., & Grigoriadis, K. (1998). A unified algebraic approach to linear control design. Taylor & Francis.

  • Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11(1—-4), 625–653.

    Article  MathSciNet  Google Scholar 

  • Veselý, P., & Ilka, A. (2013). Gain-scheduled PID controller design. Journal of Process Control, 23, 1141–1148.

    Article  Google Scholar 

  • Veselý, P., & Ilka, A. (2017). Generalized robust gain-scheduled PID controller design for affine LPV systems with polytopic uncertainty. Systems & Control Letters, 105, 6–13.

    Article  MathSciNet  Google Scholar 

  • Wang, Y., Rajamani, R., & Zemouche, A. (2019). A quadratic matrix inequality based PID controller design for LPV systems. Systems & Control Letters, 126, 67–76.

    Article  MathSciNet  Google Scholar 

  • Zheng, F., Wang, Q., & Lee, T. H. (2002). On the design of multivariable PID controllers via LMI approach. Automatica, 38, 517–526.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Apoio a Pesquisa do Distrito Federal (FAPDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo S. Tognetti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tognetti, E.S., de Oliveira, G.A. Robust State Feedback-Based Design of PID Controllers for High-Order Systems with Time-Delay and Parametric Uncertainties. J Control Autom Electr Syst 33, 382–392 (2022). https://doi.org/10.1007/s40313-021-00846-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-021-00846-2

Keywords

Navigation