Skip to main content
Log in

Mechanical Reliability Prediction of Foldable Displays Using Subcritical Crack Growth in Siloxane-Based Cover Window by Two-Point Bending Test

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Various novel materials have been researched to improve the performance of foldable displays. The foldable display includes thin-film multilayers and the cover window for anti-scratch is located at the top, making it the most vulnerable to breakage. Siloxane hybrid polymer is considered the most promising material for anti-scratch ability and flexibility. However, information for calculating the long-term reliability of such materials is seriously lacking. This paper suggests a method to predict the mechanical reliability of a foldable display based on the principles of fracture mechanics and statistics. Mechanical properties of siloxane coating were determined using two-point bending test that is non-contact test method suitable for mechanical test of thin films. The elastic moduli and Weibull characteristic strength of the polymer were obtained from the two-point bending test. Stress corrosion susceptibility parameter by subcritical crack growth was determined by measuring the fracture strain at various faceplate velocity conditions. Using Weibull characteristic strength and stress corrosion susceptibility parameter, the long-term reliability of the foldable display was predicted under various curvatures. The suggested method can be used to evaluate the long-term reliability of foldable displays more accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Koo, J. H., Kim, D. C., Shim, H. J., Kim, T. H., & Kim, D. H. (2018). Flexible and stretchable smart display: Materials, fabrication, device design, and system integration. Advanced Functional Materials, 28(35), 1801834. https://doi.org/10.1002/adfm.201801834

    Article  Google Scholar 

  2. Shi, S., Li, Z., Tsai, P., Dong, L., Wang, D., Shi, Y., et al. (2020, August). 56‐1: Invited paper: Research on commercial foldable AMOLED and relevant technologies. In SID symposium digest of technical papers (Vol. 51, No. 1, pp. 826–829). https://doi.org/10.1002/sdtp.13997

  3. Jia, Y., Liu, Z., Wu, D., Chen, J., & Meng, H. (2019). Mechanical simulation of foldable AMOLED panel with a module structure. Organic Electronics, 65, 185–192. https://doi.org/10.1016/j.orgel.2018.11.026

    Article  Google Scholar 

  4. Kim, Y. H., Choi, G. M., Shin, D., Kim, Y. H., Jang, D., & Bae, B. S. (2018). Transparent urethane-siloxane hybrid materials for flexible cover windows with ceramic-like strength, yet polymer-like modulus. ACS Applied Materials & Interfaces, 10(49), 43122–43130. https://doi.org/10.1021/acsami.8b18141

    Article  Google Scholar 

  5. Zhang, K., Huang, S., Wang, J., & Liu, G. (2019). Transparent omniphobic coating with glass-like wear resistance and polymer-like bendability. Angewandte Chemie, 131(35), 12132–12137. https://doi.org/10.1002/ange.201904210

    Article  Google Scholar 

  6. Chansomwong, K., Kim, Y. H., Lee, H., & Bae, B. S. (2020). Facile preparation of wear-resistant and anti-fingerprint hard coating with chemisorption of fluorosilane by simple wet coating. Journal of Sol-Gel Science and Technology, 95(2), 447–455. https://doi.org/10.1007/s10971-020-05294-z

    Article  Google Scholar 

  7. Choi, G. M., Jin, J., Shin, D., Kim, Y. H., Ko, J. H., Im, H. G., et al. (2017). Flexible hard coating: Glass-like wear resistant, yet plastic-like compliant, transparent protective coating for foldable displays. Advanced materials, 29(19), 1700205. https://doi.org/10.1002/adma.201700205

    Article  Google Scholar 

  8. Bae, B. S., Choi, G. M., Kim, Y. H., Kim, Y. H., & Ko, J. H. (2017, May). 17‐2: Invited paper: Flexible hard coating (Flex9H®) for Foldable display cover plastic film. In SID Symposium digest of technical papers (Vol. 48, No. 1, pp. 215–217). https://doi.org/10.1002/sdtp.11665

  9. Gulati, S. T. (1996, November). Design considerations for mirror materials. In Advanced materials for optical and precision structures (Vol. 2857, pp. 2–11). International Society for Optics and Photonics. https://doi.org/10.1117/12.258286

  10. Shiue, Y. S., & Matthewson, M. J. (2001). Stress dependent activation entropy for dynamic fatigue of pristine silica optical fibers. Journal of Applied Physics, 89(9), 4787–4793. https://doi.org/10.1063/1.1361245

    Article  Google Scholar 

  11. Ambrico, J. M., & Begley, M. R. (2002). The role of initial flaw size, elastic compliance and plasticity in channel cracking of thin films. Thin Solid Films, 419(1–2), 144–153. https://doi.org/10.1016/S0040-6090(02)00718-6

    Article  Google Scholar 

  12. Andersons, J., & Leterrier, Y. (2005). Advanced fragmentation stage of oxide coating on polymer substrate under biaxial tension. Thin Solid Films, 471(1–2), 209–217. https://doi.org/10.1016/j.tsf.2004.07.007

    Article  Google Scholar 

  13. Leterrier, Y., Mottet, A., Bouquet, N., Gilliéron, D., Dumont, P., Pinyol, A., et al. (2010). Mechanical integrity of thin inorganic coatings on polymer substrates under quasi-static, thermal and fatigue loadings. Thin Solid Films, 519(5), 1729–1737. https://doi.org/10.1016/j.tsf.2010.06.003

    Article  Google Scholar 

  14. Abdallah, A. A., Bouten, P. C. P., Den Toonder, J. M. J., & De With, G. (2011). Buckle initiation and delamination of patterned ITO layers on a polymer substrate. Surface and Coatings Technology, 205(8–9), 3103–3111. https://doi.org/10.1016/j.surfcoat.2010.11.025

    Article  Google Scholar 

  15. Matthewson, M. J. (2006, May). Strength-probability-time diagrams using power law and exponential kinetics models for fatigue. In Reliability of optical fiber components, devices, systems, and networks III (Vol. 6193, p. 619301). International Society for Optics and Photonics. https://doi.org/10.1117/12.669254

  16. Matthewson, M. J., Kurkjian, C. R., & Gulati, S. T. (1986). Strength measurement of optical fibers by bending. Journal of the American Ceramic Society, 69(11), 815–821. https://doi.org/10.1111/j.1151-2916.1986.tb07366.x

    Article  Google Scholar 

  17. Guan, Q., Laven, J., Bouten, P. C., & de With, G. (2013). Subcritical crack growth in SiN x thin-film barriers studied by electro-mechanical two-point bending. Journal of Applied Physics, 113(21), 213512. https://doi.org/10.1063/1.4809542

    Article  Google Scholar 

  18. Gulati, S. T., Westbrook, J., Carley, S., Vepakomma, H., & Ono, T. (2011, June). 45.2: Two point bending of thin glass substrate. In SID symposium digest of technical papers (Vol. 42, No. 1, pp. 652–654). Oxford: Blackwell Publishing Ltd. https://doi.org/10.1889/1.3621406

  19. Ratnaparkhi, M. V., & Park, W. J. (1986). Lognormal distribution-model for fatigue life and residual strength of composite materials. IEEE transactions on reliability, 35(3), 312–315. https://doi.org/10.1109/TR.1986.4335440

    Article  Google Scholar 

  20. Liao, L., & Köttig, F. (2014). Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Transactions on Reliability, 63(1), 191–207. https://doi.org/10.1109/TR.2014.2299152

    Article  Google Scholar 

  21. Tan, X., & Xie, L. (2018). Fatigue reliability evaluation method of a gear transmission system under variable amplitude loading. IEEE Transactions on Reliability, 68(2), 599–608. https://doi.org/10.1109/TR.2018.2864202

    Article  Google Scholar 

  22. Zok, F. W. (2017). On weakest link theory and Weibull statistics. Journal of the American Ceramic Society, 100(4), 1265–1268. https://doi.org/10.1111/jace.14665

    Article  Google Scholar 

  23. Padgett, W. J. (1998). A multiplicative damage model for strength of fibrous composite materials. IEEE Transactions on Reliability, 47(1), 46–52. https://doi.org/10.1109/24.690901

    Article  Google Scholar 

  24. Meyers, M. A. (2009). Mechanical behavior of materials (2nd ed.). Cambridge Univ. Press.

    MATH  Google Scholar 

  25. Thomas, W. F. (1958). Strength of glass fibres. Nature, 181(4614), 1006–1006. https://doi.org/10.1038/1811006a0

    Article  Google Scholar 

  26. France, P. W., Paradine, M. J., Reeve, M. H., & Newns, G. R. (1980). Liquid nitrogen strengths of coated optical glass fibres. Journal of Materials Science, 15(4), 825–830. https://doi.org/10.1007/BF00552090

    Article  Google Scholar 

  27. Gupta, P., Üçel, İB., Gudmundson, P., & Olsson, E. (2020). Characterization of the constitutive behavior of a cathode active layer in lithium-ion batteries using a bending test method. Experimental Mechanics, 60, 847–860. https://doi.org/10.1007/s11340-020-00613-5

    Article  Google Scholar 

  28. Briscoe, B. J., Fiori, L., & Pelillo, E. (1998). Nano-indentation of polymeric surfaces. Journal of Physics D: Applied Physics, 31(19), 2395. https://doi.org/10.1088/0022-3727/31/19/006

    Article  Google Scholar 

  29. Saha, R., & Nix, W. D. (2002). Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Materialia, 50(1), 23–38. https://doi.org/10.1016/S1359-6454(01)00328-7

    Article  Google Scholar 

  30. Rondinella, V. V., & Matthewson, M. J. (1993). Effect of loading mode and coating on dynamic fatigue of optical fiber in two-point bending. Journal of the American Ceramic Society, 76(1), 139–144. https://doi.org/10.1111/j.1151-2916.1993.tb03699.x

    Article  Google Scholar 

  31. Zhou, M., Liu, Y., Huang, R., Cao, W., Jing, X., & Hwang, J. (2021, August). P‐13.2: Optimizing pad bending structure based on numerical simulation to prevent metal line crack. In SID symposium digest of technical papers (Vol. 52, pp. 1016–1018). https://doi.org/10.1002/sdtp.15359

  32. Nath, M. M., & Gupta, G. (2019, August). Modeling the mechanical performance of bendable display under cyclic loading. In 2019 IEEE international flexible electronics technology conference (IFETC) (pp. 1–5). IEEE. https://doi.org/10.1109/IFETC46817.2019.9073716

  33. Ha, M. H., Choi, J. K., Park, B. M., & Han, K. Y. (2021). Highly flexible cover window using ultra-thin glass for foldable displays. Journal of Mechanical Science and Technology, 35(2), 661–668. https://doi.org/10.1007/s12206-021-0126-y

    Article  Google Scholar 

  34. Kim, M. J., Ryu, H. S., Choi, Y. Y., Ho, D. H., Lee, Y., Tripathi, A., et al. (2021). Completely foldable electronics based on homojunction polymer transistors and logics. Science Advances. https://doi.org/10.1126/sciadv.abg8169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seog-young Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Mg., Kim, Ym. & Han, Sy. Mechanical Reliability Prediction of Foldable Displays Using Subcritical Crack Growth in Siloxane-Based Cover Window by Two-Point Bending Test. Int. J. Precis. Eng. Manuf. 23, 1301–1313 (2022). https://doi.org/10.1007/s12541-022-00702-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00702-6

Keywords

Navigation