Skip to main content
Log in

Interpretable Machine Learning Method for Modelling Fatigue Short Crack Growth Behaviour

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Interpretable machine learning (ML) has become a popular tool in the field of science and engineering. This research proposed a domain knowledge combined with ML method to increase interpretability while ensuring the accuracy of ML models and verifies the generality of the ML approach in fatigue crack growth (FCG) modelling. LZ50 steel single edge notch tension (SENT) specimens were tested for short crack (SC) growth rate and microstructure characterization under various R-controls. Based on the test results, the SC growth process was divided into 3 stages: microstructural short crack (0–145 μm), physical short crack (145–1000 μm), and long crack (1000 μm–fracture). Following the analysis of 8 semi-empirical FSCG rate equations with different driving forces, 6 impact variables that may affect the FCG rate characteristics were identified. Random forest and Pearson correlation analysis were used to investigate the influence of each feature on the FCG rate and the relationships among the features. The main influential features for the short crack symbolic regression (SCSR) model were found to be |ΔK–ΔKat|, Δγxy, |aat|, and eα(1−R). After considering these 4 input features, the predicted FSCG rate equation generated by the SR model has a concise mathematical structure. Finally, an elastic net multiple linear regression method was proposed to determine the parameters of the predicted equation, while retaining the physical characteristics of each parameter. The SCSR model for SC demonstrated good prediction performance on various metallic materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data and Code Availability

Data will be made available on reasonable request.

References

  1. G. Huang, Z.H. Li, L.M. Sun, X.W. Li, K. Wen, L.Z. Yan, B.Q. Xiong, Y.A. Zhang, Rare Met. 40, 2523–2529 (2021)

    Article  CAS  Google Scholar 

  2. V. Monfared, S. Ramakrishna, N. Nasajpour-Esfahani, D. Toghraie, M. Hekmatifar, S. Rahmati, Met. Mater. Int. 29, 3442–3470 (2023)

    Article  Google Scholar 

  3. S. Blasón, J.A.F.O. Correia, N. Apetre, A. Arcari, A.M.P. De Jesus, P. Moreira, A. Fernández-Canteli, Procedia Struct. 1, 110–117 (2016)

    Google Scholar 

  4. J.E. Kim, Y.J. Kim, J.H. Bae, B.S. You, S.H. Park, Met. Mater. Int. 29, 3511–3520 (2023)

    Article  CAS  Google Scholar 

  5. K. Wang, F. Wang, W. Cui, T. Hayat, B. Ahmad, Fatigue Fract. Eng. Mater. Struct. 37, 1075–1086 (2014)

    Article  Google Scholar 

  6. K.J. Miller, A.S.T.M. Spec, Tech. Publ. 1296, 267–286 (1997)

    Google Scholar 

  7. D.L. McDowell, K. Gall, M.F. Horstemeyer, J. Fan, Eng. Fract. Mech. 70, 49–80 (2003)

    Article  Google Scholar 

  8. G.M. Castelluccio, D.L. McDowell, Mater. Sci. Eng. A 598, 34–55 (2014)

    Article  CAS  Google Scholar 

  9. D. Tatlor, J.F. Knott, Fatigue Fract. Eng. Mater. Struct. 4, 147–155 (1981)

    Article  Google Scholar 

  10. W. Zhang, L. Chai, L. Ren, L. Cai, Eng. Fract. Mech. 271, 108650 (2022)

    Article  Google Scholar 

  11. M.H. Hashmi, S.S.R. Koloor, M.F. Abdul-Hamid, M.N. Tamin, Eng. Fract. Mech. 270, 108589 (2022)

    Article  Google Scholar 

  12. E. Natkowski, P. Sonnweber-Ribic, S. Münstermann, Int. J. Fatigue 156, 106621 (2022)

    Article  CAS  Google Scholar 

  13. M.L. Su, C. Feng, C.T. Peng, L.Y. Xu, Y.D. Han, L. Zhao, Int. J. Fatigue 166, 107258 (2023)

    Article  CAS  Google Scholar 

  14. M.L. Su, L.Y. Xu, C.T. Peng, Y.D. Han, L. Zhao, Int. J. Fatigue 156, 106689 (2022)

    Article  CAS  Google Scholar 

  15. Z. Liao, B. Yang, Y. Qin, S. Xiao, G. Yang, T. Zhu, N. Gao, Int. J. Fatigue 132, 105366 (2020)

    Article  CAS  Google Scholar 

  16. Y.X. Zhao, B. Yang, W.H. Zhang, Key Eng. Mater. 324–325, 571–578 (2006)

    Article  Google Scholar 

  17. G.M. Castelluccio, D.L. McDowell, Int. J. Fract. 176, 49–64 (2012)

    Article  CAS  Google Scholar 

  18. B.O. Kong, M.S. Kim, B.H. Kim, J.H. Lee, Met. Mater. Int. 29, 1334–1345 (2023)

    Article  Google Scholar 

  19. J.F. Durodola, Prog. Mater. Sci. 123, 100797 (2022)

    Article  CAS  Google Scholar 

  20. M.B. Gorji, A. de Pannemaecker, S. Spevack, Int. J. Mech. Sci. 215, 106949 (2022)

    Article  Google Scholar 

  21. X. Peng, S.C. Wu, W.J. Qian, J.G. Bao, Y.N. Hu, Z.X. Zhan, G.P. Guo, P.J. Withers, Int. J. Mech. Sci. 221, 107185 (2022)

    Article  Google Scholar 

  22. H. Liu, X. Yang, S. Li, D. Shi, H. Qi, Int. J. Mech. Sci. 178, 105625 (2020)

    Article  Google Scholar 

  23. D.H. Le Nguyen, Q.B. Tao, V.H. Nguyen, M. Abdel-Wahab, H. Nguyen-Xuan, Eng. Fract. Mech. 235, 107085 (2020)

    Article  Google Scholar 

  24. X. Ma, X. He, Z.C. Tu, Eng. Fract. Mech. 241, 107402 (2021)

    Article  Google Scholar 

  25. Z.H. Lian, M.J. Li, W.C. Lu, Int. J. Fatigue 157, 106716 (2022)

    Article  CAS  Google Scholar 

  26. M. Jimenez-Martinez, M. Alfaro-Ponce, Int. J. Fatigue 124, 42–47 (2019)

    Article  CAS  Google Scholar 

  27. L. Gan, H. Wu, Z. Zhong, Int. J. Fatigue 156, 106666 (2022)

    Article  CAS  Google Scholar 

  28. J.A. Esterhuizen, B.R. Goldsmith, S. Linic, Nat. Catal. 5, 175–184 (2022)

    Article  Google Scholar 

  29. Y.Q. Wang, N. Wagner, J.M. Rondinelli, Mrs Commun. 9, 793–805 (2019)

    Article  Google Scholar 

  30. H. Shao, F. Villaescusa-Navarro, S. Genel, D.N. Spergel, D. Anglés-Alcázar, L. Hernquist, R. Davé, D. Narayanan, G. Contardo, M. Vogelsberger, Astrophys. J. 927, 85 (2022)

    Article  Google Scholar 

  31. B.C. Weng, Z.L. Song, R.L. Zhu, Q.Y. Yan, Q.D. Sun, C.G. Grice, Y.F. Yan, W.J. Yin, Nat. Commun. 11, 3513 (2020)

    Article  Google Scholar 

  32. J. Craven, V. Jejjala, A. Kar, J. High Energ. Phys. 2021, 40 (2021)

    Article  Google Scholar 

  33. M.A. Ziatdinov, Y. Liu, A.N. Morozovska, E.A. Eliseev, X. Zhang, I. Takeuchi, S.V. Kalinin, Adv. Mater. 34, 2201345 (2022)

    Article  CAS  Google Scholar 

  34. A. Singh, Z. Gu, X. Hou, Y. Liu, D.J. Hughes, Compos. Struct. 282, 115107 (2022)

    Article  CAS  Google Scholar 

  35. B. Cao, S. Yang, A.K. Sun, Z.Q. Dong, T.Y. Zhang, J. Mater. Inf. 2, 4 (2022)

    Article  CAS  Google Scholar 

  36. Z. Zojaji, M.M. Ebadzadeh, H. Nasiri, Appl. Soft Comput. 122, 108825 (2022)

    Article  Google Scholar 

  37. L. Gan, H. Wu, Z. Zhong, Int. J. Fatigue 161, 106889 (2022)

    Article  Google Scholar 

  38. S. Zhou, B. Yang, S. Xiao, G. Yang, T. Zhu, Chin. J. Mech. Eng. 36, 40 (2023)

    Article  Google Scholar 

  39. F. Bachmann, R. Hielscher, H. Schaeben, Ultramicroscopy 111, 1720–1733 (2011)

    Article  CAS  PubMed  Google Scholar 

  40. E. Natkowski, A.R. Durmaz, P. Sonnweber-Ribic, S. Münstermann, Int. J. Fatigue 152, 106418 (2021)

    Article  CAS  Google Scholar 

  41. K. Tokaji, T. Ogawa, O. Shuji, Fatigue Fract. Eng. Mater. Struct. 11, 331–342 (1988)

    Article  Google Scholar 

  42. A. Rovinelli, Y. Guilhem, H. Proudhon, R.A. Lebensohn, W. Ludwig, M.D. Sangid, Model. Simul. Mater. Sci. Eng. 25, 45010 (2017)

    Article  Google Scholar 

  43. W.D. Musinski, D.L. McDowell, Acta Mater. 112, 20–39 (2016)

    Article  CAS  Google Scholar 

  44. P.D. Hobson, Fatigue Fract. Eng. Mater. Struct. 5, 323–327 (1982)

    Article  Google Scholar 

  45. K.J. Miller, Mater. Sci. Technol. 9, 453–462 (1993)

    Article  CAS  Google Scholar 

  46. M. Goto, K. Kamil, S.Z. Han, K. Euh, S.S. Kim, Y. Yokoho, Int. J. Fatigue 50, 63–71 (2013)

    Article  CAS  Google Scholar 

  47. K.S. Chan, J. Lankford, Scripta Metal. 17, 529–532 (1983)

    Article  Google Scholar 

  48. B. Yang, Y.X. Zhao, Int. J. Fatigue 35, 71–78 (2012)

    Article  Google Scholar 

  49. C. Santus, D. Taylor, Int. J. Fatigue 31, 1356–1365 (2009)

    Article  CAS  Google Scholar 

  50. M.F. Guan, H. Yu, Sci. China Technol. Sci. 56, 71–79 (2013)

    Article  CAS  Google Scholar 

  51. J.C. Liang, Z. Wang, H.F. Xie, H.J. Shi, X.D. Li, Int. J. Fatigue 128, 105195 (2019)

    Article  CAS  Google Scholar 

  52. W.A. Herman, R.W. Hertzberg, R. Jaccard, Fatigue Fract. Eng. Mater. Struct. 11, 303–320 (1988)

    Article  Google Scholar 

  53. P. López-Crespo, R.L. Burguete, E.A. Patterson, A. Shterenlikht, P.J. Withers, J.R. Yates, Exp. Mech. 49, 551–559 (2009)

    Article  Google Scholar 

  54. B. Yang, Z. Wei, Z. Liao, S. Zhou, S. Xiao, T. Zhu, G. Yang, M. Wang, Chin. J. Mech. Eng. 34 (2021).

  55. S. Wang, B. Yang, J. Li, S. Zhou, S. Xiao, Eng. Fract. Mech. 289, 109430 (2023)

    Article  Google Scholar 

  56. A. Antoniadis, S. Lambert-Lacroix, J. Poggi, Reliab. Eng. Syst. Saf. 206, 107312 (2021)

    Article  Google Scholar 

  57. M. Kishino, K. Matsumoto, Y. Kobayashi, R. Taguchi, N. Akamatsu, A. Shishido, Int. J. Fatigue 166, 107230 (2023)

    Article  CAS  Google Scholar 

  58. A.R. Durmaz, E. Natkowski, N. Arnaudov, P. Sonnweber-Ribic, S. Weihe, S. Münstermann, C. Eberl, P. Gumbsch, Int. J. Fatigue 160, 106824 (2022)

    Article  CAS  Google Scholar 

  59. Y.F. Huang, X.B. Ye, B.R. Hu, L.J. Chen, Int. J. Fatigue 88, 217–226 (2016)

    Article  CAS  Google Scholar 

  60. H. Zou, T. Hastie, J. Royal. Statistical. Soc. B 67, 301–320 (2005)

    Article  Google Scholar 

  61. W. Zhan, N. Lu, C. Zhang, Eng. Fract. Mech. 119, 85–96 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 52375159), the Sichuan Science and Technology Program (Grant No. 2022YFH0075), the National Railway Administration of the P.R.C (KF2023-025), and the Independent Research Project of State Key Laboratory of Traction Power (Grant No. 2022TPL_T03). The first author would like to acknowledge the financial support of the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Contributions

SZ: Investigation, Writing—original draft. BY: Supervision, review & editing. SX: Supervision. GY: Resources. Tao Zhu: Data curation.

Corresponding author

Correspondence to Bing Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Yang, B., Xiao, S. et al. Interpretable Machine Learning Method for Modelling Fatigue Short Crack Growth Behaviour. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01628-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01628-6

Keywords

Navigation