Skip to main content
Log in

Prediction of Creep Life Using an Explainable Artificial Intelligence Technique and Alloy Design Based on the Genetic Algorithm in Creep-Strength-Enhanced Ferritic 9% Cr Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Creep-strength-enhanced ferritic steels have been introduced for high-temperature components. The high accuracy of creep life prediction and new high creep-strength alloys are needed for safe long-term operation. In this paper, a data-driven method was used to overcome the limitations of the simple-parameter life prediction method that does not consider the complex interactions that occur between many input variables. The explainable artificial intelligence technology, such as the Shaply additive explanation value(SHAP), enables intuitive understanding of the effect of individual variables on creep life and helps to quantitatively evaluate the effect. The artificial intelligence model was optimized using a genetic algorithm, and a method for proposing an optimal alloy composition with a desired creep life could be presented. In this paper, the maximum expected creep life of 58,640 h in the standard component range of ASME SA213 T92 under the conditions of 650 °C and 100 MPa was predicted, and a new alloy composition having a creep life of over 100,000 h under the same conditions is proposed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Masuyama, ISIJ Int. 41, 612 (2001)

    Article  CAS  Google Scholar 

  2. M. Subanović, J. Pirón, F. Zeller, M. Jarrar, A. Schneider, Development of a new high-performance martensitic heat-resistant steel for boiler applications, in Proceedings of the ASME 2018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries, Seattle, 3–5 April 2018, V001T01A008 (ASME, New York, 2018)

  3. S. Yamasaki, M. Mitsuhara, H. Nakashima, ISIJ Int. 58, 1146 (2018)

    Article  CAS  Google Scholar 

  4. K. Kimura, Mater. High Temp. 25, 121 (2008)

    Article  Google Scholar 

  5. K. Kimura, Creep rupture strength evaluation with region splitting by half yield, in Proceedings of the ASME 2013 Pressure Vessels and Piping Conference, Paris, 14–18 July 2013. vol. 6A: Materials and Fabrication, V06AT06A038 (ASME, New York, 2013)

  6. M. Prager, J. Press. Vessel Technol. 117, 95 (1995)

    Article  CAS  Google Scholar 

  7. F.R. Larson, J. Miller, Trans. ASME 74, 765 (1952)

    Google Scholar 

  8. F. Masuyama, Int. J. Press. Ves. Pip. 84, 53 (2007)

    Article  CAS  Google Scholar 

  9. A.K. Verma, J.A. Hawk, L.S. Bruckman, R.H. French, V. Romanov, J.L.W. Carter, Metall. Mater. Trans. A 50, 3106 (2019)

    Article  CAS  Google Scholar 

  10. H.K.D.H. Bhadesh, ISIJ Int. 39, 966 (1999)

    Article  Google Scholar 

  11. M. Liang, Z. Chan, Z. Wan, Y. Gan, E. Schlangen, B. Savija, Cement Concrete Comp. 125, 104295 (2022)

    Article  Google Scholar 

  12. J. Wang, Y. Fa, Y. Tian, X. Yu, J. Mater. Res. Technol. 13, 635 (2021)

    Article  CAS  Google Scholar 

  13. Y.-H. Sheu, Front. Psychiatry 11, 551299 (2020)

    Article  Google Scholar 

  14. D. Gunning, Explainable Artificial Intelligence (XAI), DARPA/I2O, Program Update November 2017

  15. https://ambiata.com/blog/2021-04-12-xai-part-1

  16. A. Mahendran, A. Vedaldi, Understanding deep image representations by inverting them, in Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 7-12 June 2015 (IEEE, New York, 2015), pp. 5188-5196

  17. A. Dosovitskiy, T. Brox, Inverting visual representations with convolutional networks, in Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016 (IEEE, New York, 2016), pp. 4829-4837

  18. B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for discriminative localization, , in Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016 (IEEE, New York, 2016), pp. 2921-2929

  19. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2nd edn. (Springer, New York, 2009), pp. 369-370

  20. C. Molnar, Interpretable Machine Learning (Leanpub, Victoria, 2019), pp. 51-70

  21. https://www.oreilly.com/content/introduction-to-local-interpretable-model-agnostic-explanations-lime/

  22. https://shap.readthedocs.io/en/latest/index.html

  23. M.L. Scott, S.-I. Lee, A unified approach to interpreting model predictions, in Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), ed. by U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, R. Fergus, Long Beach, 4-9 December 2017 (Curran Associates Inc., Red Hook, 2017)

  24. L. Breiman, Mach. Learn. 45, 5 (2001)

    Article  Google Scholar 

  25. https://scikit-learn.org/stable/modules/permutation_importance.html

  26. D. Opitz, R. Maclin, J. Artif. Intell. Res. 11, 169 (1999)

    Article  Google Scholar 

  27. R. Polikar, IEEE Circ. Syst. Mag. 6, 21 (2006)

    Article  Google Scholar 

  28. L. Rokach, Artif. Intell. Rev. 33, 1 (2010)

    Article  Google Scholar 

  29. H. Blockeel, Hypothesis space, in Encyclopedia of Machine Learning, ed. by C. Sammut, G.I. Webb (Springer, Boston, 2011), pp. 511–513

    Article  Google Scholar 

  30. ASME BPVC. II. A-209 SA213/SA213M, Specification for seamless ferritic and austenitic alloy-steel boiler, superheater, and heat exchanger tubes, pp. 285–299 (2019)

  31. https://www.phase-trans.msm.cam.ac.uk/map/map.html

  32. B.O. Kong, S.H. Ryu, Y.S. Lee, J.I. Suk, J.T. Kim, Y.S. Yoo, Application of neural network data modeling for estimating of material properties and creep life, in Proceedings of the 17th Conference on Mechanical Behaviors of Materials, ed. by J.H. Hong, Y.S. Kim. Pohang, 14 November 2003 (The Korean Institute of Metals and Materials, Seoul, 2003), pp. 300–307

  33. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, 1996)

    Google Scholar 

  34. https://en.wikipedia.org/wiki/Genetic_algorithm

  35. H. Zhou, Z. Deng, Y. Xia, M. Fu, Neurocomputing 216, 208 (2016)

    Article  Google Scholar 

  36. J.T. Terpstra, C.-H. Chang, R.C. Magel, J. Stat. Comput. Simulat. 81, 1381 (2011)

    Article  Google Scholar 

  37. J. Parker, J. Siefert, Adv. Mater. Sci. Eng. 2018, 6789563 (2018)

    Article  Google Scholar 

  38. A. Kipelova, M. Odnobokova, A. Belyakov, R. Kaibyshev, Metall. Mater. Trans. A 44, 577 (2013)

    Article  Google Scholar 

  39. L. Helis, Y. Toda, T. Hara, H. Miyazaki, F. Abe, Mater. Sci. Eng. A 510–511, 88 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the MOTIE Project No.20016472 and 20016054 of Research Center for Technological Innovation on Future Energy in Changwon National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je Hyun Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, B.O., Kim, M.S., Kim, B.H. et al. Prediction of Creep Life Using an Explainable Artificial Intelligence Technique and Alloy Design Based on the Genetic Algorithm in Creep-Strength-Enhanced Ferritic 9% Cr Steel. Met. Mater. Int. 29, 1334–1345 (2023). https://doi.org/10.1007/s12540-022-01312-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01312-7

Keywords

Navigation