Skip to main content
Log in

Optimal Process Conditions for Powder Bed Fusion and Analysis of Properties of Maraging Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Powder bed fusion (PBF), an additive manufacturing technology, has been widely used in the manufacturing field to create complex designs. Most PBF process studies have investigated the effect of laser power and scan speed on the mechanical properties and porosity of microstructure. In this study, five process conditions were selected to obtain superior properties of maraging steel, which were validated by absolute density analysis, hardness, and tensile tests. Maraging steel exhibits diverse mechanical properties depending on the heat-treatment combinations of solution annealing and aging. Mechanical property tests were conducted to compare the various temperature properties of the fabricated maraging steel under optimal conditions. Maraging steel exhibited a hardness of 612.7 HV and a tensile strength of 1925.6 MPa at 25 °C, and the strength was greater than 1000 MPa at temperatures below 600 °C. Additionally, the applicability of a fabricated die for maraging steel was investigated. The maraging steel die and American Iron and Steel Institute (AISI) D2 were analyzed by a forging process based on die load data sensing with a piezoelectric bolt. The maximum loads of the sensor in horizontal and vertical directions were 24.7% and 15.8% lower for the fabricated die than those of AISI D2. The findings confirm that the fabricated maraging steel is a suitable manufacturing process for commercial processes and can be used to manufacture dies with complex shapes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.S. Yoon, J.Y. Lee, H.S. Kim, M.S. Kim, E.S. Kim, Y.J. Shin, W.S. Chu, S.H. Ahn, Int. J. Precis. Eng. Manuf. - Green Technol. 1, 261–279 (2014). https://doi.org/10.1007/s40684-014-0033-0

    Article  Google Scholar 

  2. M.Q. Zafar, H. Zhao, Met. Mater. Int. 26, 564–585 (2020). https://doi.org/10.1007/s12540-019-00441-w

    Article  Google Scholar 

  3. K. Kempen, L. Thijs, J. Van Humbeeck, J.-P. Kruth, Phys. Procedia 39, 439–446 (2012). https://doi.org/10.1016/j.phpro.2012.10.059

    Article  CAS  Google Scholar 

  4. M. Zhao, C. Duan, X. Luo, Met. Mater. Int. 28, 2225–2238 (2022). https://doi.org/10.1007/s12540-021-01129-w

    Article  Google Scholar 

  5. C.C. Kuo, Z.F. Jiang, X.Y. Yang, S.X. Chu, J.Q. Wu, Int. J. Adv. Manuf. Technol. 107, 1223–1238 (2020). https://doi.org/10.1007/s00170-020-05114-2

    Article  Google Scholar 

  6. C.C. Kuo, S.X. Qiu, Materials 14, 7258 (2021). https://doi.org/10.3390/ma14237258

    Article  CAS  Google Scholar 

  7. S. Sendino, S. Martinez, F. Lartategui, M. Gardon, A. Lamikiz, J.J. Gonzalez, Int. J. Adv. Manuf. Technol. 124, 789–799 (2023). https://doi.org/10.1007/s00170-022-10423-9

    Article  Google Scholar 

  8. S.H. Park, J.Y. Jang, Y.O. Noh, B.H. Bae, B.H. Rhee, D.R. Eo, J.W. Cho, Mechanical properties of 316L manufactured by selective laser melting (SLM) 3D printing, in Proceedings of the Korean Society of Propulsion Engineers Conference (The Korean Society of Propulsion Engineers, Daejeon, 2017), pp. 872–876. https://koreascience.kr/article/CFKO201734662505423.page

  9. M.J. Benoit, M. Mazur, M.A. Easton, M. Brandt, Int. J. Adv. Manuf. Technol. 114, 915–927 (2021). https://doi.org/10.1007/s00170-021-06957-z

    Article  Google Scholar 

  10. M. Badrossamay, A. Rezaei, E. Foroozmehr, A. Maleki, A. Foroozmehr, Int. J. Adv. Manuf. Technol. 118, 1703–1717 (2022). https://doi.org/10.1007/s00170-021-07719-7

    Article  Google Scholar 

  11. S. Vaudreuil, S.E. Bencaid, H.R. Vanaei, A. El Magri, Materials 15, 8640 (2022). https://doi.org/10.3390/ma15238640

    Article  CAS  Google Scholar 

  12. C.C. Kuo, Z.F. Jiang, Int. J. Adv. Manuf. Technol. 104, 4169–4181 (2019). https://doi.org/10.1007/s00170-019-04198-9

    Article  Google Scholar 

  13. S.W. Kim, H.W. Lee, Met. Mater. Int. 24, 616–625 (2018). https://doi.org/10.1007/s12540-018-0078-7

    Article  CAS  Google Scholar 

  14. B. Mooney, K.I. Kourousis, R. Raghavendra, Addit. Manuf. 25, 19–31 (2019). https://doi.org/10.1016/j.addma.2018.10.032

    Article  CAS  Google Scholar 

  15. ASM, Handbook Vol. 1: Properties and Selection: Irons, Steels, and High-Performance Alloys (ASM International, Materials Park,, 2005)

  16. H. Coldwell, R. Woods, M. Paul, P. Koshy, R. Dewes, D. Aspinwall, J. Mater. Proces. Technol. 135, 301–311 (2003). https://doi.org/10.1016/S0924-0136(02)00861-0

    Article  CAS  Google Scholar 

  17. S.Y. Kim, A. Ebina, A. Sano, S. Kubota, Procedia Manuf. 15, 542–549 (2018). https://doi.org/10.1016/j.promfg.2018.07.275

    Article  Google Scholar 

  18. I. Jang, G. Bae, H. Kim, Mech. Syst. Signal Process. 180, 109457 (2022). https://doi.org/10.1016/j.ymssp.2022.109457

    Article  Google Scholar 

  19. G. Casalino, S.L. Campanelli, N. Contuzzi, A.D. Ludovico, Opt. Laser Technol. 65, 151–158 (2015). https://doi.org/10.1016/j.optlastec.2014.07.021

    Article  CAS  Google Scholar 

  20. A. Suzuki, R. Nishida, N. Takata, M. Kobashi, M. Kato, Addit. Manuf. 28, 160–168 (2019). https://doi.org/10.1016/j.addma.2019.04.018

    Article  CAS  Google Scholar 

  21. H. Gong, K. Rafi, H. Gu, T. Starr, B. Stucker, Addit. Manuf. 1–4, 87–98 (2014). https://doi.org/10.1016/j.addma.2014.08.002

    Article  Google Scholar 

  22. ASTM, Standard E92.82, Standard Test Method for Vickers Hardness of Metallic Materials (ASTM International, West Conshohocken, PA, 2006)

  23. ASTM, Standard E28.04, E8M-04: Standard Test Methods for Tension Testing of Metallic Materials (ASTM International, West Conshohocken, PA, 2006)

  24. Y. Bai, C. Zhao, J. Yang, R. Hong, C. Weng, H. Wang, J. Mater. Process. Technol. 288, 116906 (2021). https://doi.org/10.1016/j.jmatprotec.2020.116906

    Article  CAS  Google Scholar 

  25. D.G. Lee, K.C. Jang, J.M. Kuk, I.S. Kim, J. Mater. Process. Technol. 162–163, 342–349 (2005). https://doi.org/10.1016/j.jmatprotec.2005.02.102

    Article  CAS  Google Scholar 

  26. ASTM, Standard E21.09, Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials (ASTM International, West Conshohocken, PA, 2006)

  27. M.S. Baek, K.S. Kim, T.W. Park, J.H. Ham, K.A. Lee, Mater. Sci. Eng. A 785, 139375 (2020). https://doi.org/10.1016/j.msea.2020.139375

    Article  CAS  Google Scholar 

  28. D.H. Kim, B.M. Kim, C.G. Kang, Finite Elem. Anal. Des. 41, 1255–1269 (2005). https://doi.org/10.1016/j.finel.2004.11.005

    Article  Google Scholar 

  29. M. Davoudi, A.F. Nejad, S.S.R. Koloor, M. Petrů, J. Mater. Res. Technol. 15, 5221–5231 (2021). https://doi.org/10.1016/j.jmrt.2021.10.093

    Article  Google Scholar 

  30. J. Ni, C.P. Cao, Y. Li, Procedia Manuf. 15, 451–458 (2018). https://doi.org/10.1016/j.promfg.2018.07.252

    Article  Google Scholar 

  31. D. Klobčar, J. Tušek, B. Taljat, Mater. Sci. Eng. A 472, 198–207 (2008). https://doi.org/10.1016/j.msea.2007.03.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted with support from the Korea Institute of Industrial Technology as “Digital transfer project of Ppuri technology master know-how (KITECH UR-22-0041)”. We would like to thank Editage (www.editage.co.kr) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

ARJ: Conceptualization, methodology, data analysis, writing—original draft. JSA: methodology, data analysis, visualization, writing. SHK: investigation, figure drawing, methodology. DYP: formal analysis, discussion. YHM: conceptualization, formal analysis, discussion. SKH: validation, writing—review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to Sun Kwang Hwang.

Ethics declarations

Conflict of interest

The authors report there are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, A.R., An, J.S., Kim, S.H. et al. Optimal Process Conditions for Powder Bed Fusion and Analysis of Properties of Maraging Steel. Met. Mater. Int. 29, 2865–2877 (2023). https://doi.org/10.1007/s12540-023-01437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01437-3

Keywords

Navigation