Skip to main content
Log in

Study of Deformation Mechanisms of a High-Purity α-Titanium Plate Under Monotonic Loading with the EVPSC-TDT Model

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The deformation mechanisms of a rolled high-purity α-titanium plate under monotonic loading along the rolling direction (RD), transverse direction (TD), and normal direction (ND) are investigated by the Elastic Visco-Plastic Self-Consistent (EVPSC) model, which incorporates a Twinning and De-Twinning (TDT) scheme to describe twinning behavior during straining. In the EVPSC-TDT model, plastic deformation is assumed to be accommodated by prismatic, basal and pyramidal \(\left\langle {{\text{c}} + {\text{a}}} \right\rangle\) slip modes as well as the \(\left\{ {10\bar{1}2} \right\}\) extension and \(\left\{ {11\bar{2}2} \right\}\) contraction twin modes. Numerical results based on the EVPSC-TDT model are in good agreement with the corresponding experimental data. The tension–compression asymmetry, anisotropic initial yielding and strain hardening behavior are interpreted in terms of the predicted relative activities of various deformation modes, twin volume fractions and texture evolutions. It is demonstrated that twinning plays an important role in tension–compression asymmetry and plastic anisotropy, which is closely related to the loading direction with respect to crystal orientations in the initial texture. In addition, it can be concluded that the TDT scheme permits better performance in describing twinning-associated deformation behavior for the rolled high-purity α-titanium plate than the Predominant Twin Reorientation (PTR) model even when detwinning is not involved.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

taken from Knezevic et al. [24]

Fig. 13

Similar content being viewed by others

References

  1. R. Thomas, Geothermics 32, 679 (2003)

    Article  CAS  Google Scholar 

  2. F.H. Froes, H. Friedrich, J. Kiese, D. Bergoint, JOM 56, 40 (2004)

    Article  CAS  Google Scholar 

  3. H. Conrad, Prog. Mater. Sci. 26, 123 (1981)

    Article  CAS  Google Scholar 

  4. S. Nemat-Nasser, W.G. Guo, J.Y. Cheng, Acta Mater. 47, 3705 (1999)

    Article  CAS  Google Scholar 

  5. L. Wang, R.I. Barabash, Y. Yang, T.R. Bieler, M.A. Crimp, P. Eisenlohr, W. Liu, G.E. Ice, Metall. Mater. Trans. A 42, 626 (2011)

    Article  CAS  Google Scholar 

  6. J.L.W. Warwick, N.G. Jones, K.M. Rahman, D. Dye, Acta Mater. 60, 6720 (2012)

    Article  CAS  Google Scholar 

  7. M. Battaini, E.V. Pereloma, C.H.J. Davies, Metall. Mater. Trans. A 38, 276 (2007)

    Article  Google Scholar 

  8. M.E. Nixon, O. Cazacu, R.A. Lebensohn, Int. J. Plast. 26, 516 (2010)

    Article  CAS  Google Scholar 

  9. E. Yu, I. Kim, D.H. Shin, J. Kim, Mater. Trans. 49, 38 (2008)

    Article  CAS  Google Scholar 

  10. W. Tirry, S. Bouvier, N. Benmhenni, W. Hammami, A.M. Habraken, F. Coghe, D. Schryvers, L. Rabet, Mater. Charact. 72, 24 (2012)

    Article  CAS  Google Scholar 

  11. A. Roth, M.A. Lebyodkin, T.A. Lebedkina, J.-S. Lecomte, T. Richeton, K.E.K. Amouzou, Mater. Sci. Eng. A 596, 236 (2014)

    Article  CAS  Google Scholar 

  12. N. Yi, T. Hama, A. Kobuki, H. Fujimoto, H. Takuda, Mater. Sci. Eng. A 655, 70 (2016)

    Article  CAS  Google Scholar 

  13. J. Won, C. Park, S. Hong, C. Lee, J. Alloys Compd. 651, 245 (2015)

    Article  CAS  Google Scholar 

  14. A.A. Salem, S.R. Kalidindi, R.D. Doherty, Acta Mater. 51, 4225 (2003)

    Article  CAS  Google Scholar 

  15. T. Hama, H. Nagao, A. Kobuki, H. Fujimoto, H. Takuda, Mater. Sci. Eng. A 620, 390 (2015)

    Article  Google Scholar 

  16. M. Wroński, M. Arul Kumar, R.J. McCabe, K. Wierzbanowski, C.N. Tomé, Int. J. Plast. 148, 103129 (2022)

    Article  Google Scholar 

  17. M.S. Lee, M.K. Ji, Y.T. Hyun, E.Y. Kim, T.S. Jun, Mater. Charact. 172, 110834 (2021)

    Article  CAS  Google Scholar 

  18. B. Revil-Baudard, O. Cazacu, E. Massoni, Int. J. Solids Struct. 228, 111121 (2021)

    Article  CAS  Google Scholar 

  19. Z.N. Lei, P.F. Gao, X.X. Wang, M. Zhan, H.W. Li, J. Mater. Sci. Technol. 86, 77 (2021)

    Article  Google Scholar 

  20. T. Hama, A. Kobuki, H. Takuda, Int. J. Plast. 91, 77 (2017)

    Article  CAS  Google Scholar 

  21. S. Sinha, A. Ghosh, N.P. Gurao, Philos. Mag. 96, 1485 (2016)

    Article  CAS  Google Scholar 

  22. N.P. Gurao, R. Kapoor, S. Suwas, Acta Mater. 59, 3431 (2011)

    Article  CAS  Google Scholar 

  23. K.E.K. Amouzou, T. Richeton, A. Roth, M.A. Lebyodkin, T.A. Lebedkina, Int. J. Plast. 80, 222 (2016)

    Article  CAS  Google Scholar 

  24. M. Knezevic, R.A. Lebensohn, O. Cazacu, B. Revil-Baudard, G.P. Proust, S.C. Vogel, M.E. Nixon, Mater. Sci. Eng. A 564, 116 (2013)

    Article  CAS  Google Scholar 

  25. M. Wronski, M.A. Kumar, L. Capolungo, R.J. Mccabe, K. Wierzbanowski, C.N. Tomé, Mater. Sci. Eng. A 724, 289 (2018)

    Article  CAS  Google Scholar 

  26. D. Gloaguen, B. Girault, J. Fajoui, V. Klosek, M.J. Moya, Mater. Sci. Eng. A 662, 395 (2016)

    Article  CAS  Google Scholar 

  27. X.P. Wu, S.R. Kalidindi, C. Necker, A.A. Salem, Acta Mater. 55, 423 (2007)

    Article  CAS  Google Scholar 

  28. N. Benmhenni, S. Bouvier, R. Brenner, T. Chauveau, B. Bacroix, Int. J. Plast. 80, 222 (2013)

    Google Scholar 

  29. N. Benmhenni, S. Bouvier, R. Brenner, T. Chauveau, B. Bacroix, Mater. Sci. Eng. A 573, 222 (2013)

    Article  CAS  Google Scholar 

  30. P. Van Houtte, Acta Metall. 26, 591 (1978)

    Article  Google Scholar 

  31. P.A. Turner, C.N. Tomé, Acta Metall. Mater. 42, 4143 (1994)

    Article  CAS  Google Scholar 

  32. A. Molinari, G.R. Canova, S. Ahzi, Acta Metall. 35, 2983 (1987)

    Article  CAS  Google Scholar 

  33. R.A. Lebensohn, C.N. Tomé, Acta Metall. Mater. 41, 2611 (1993)

    Article  CAS  Google Scholar 

  34. C.N. Tomé, R.A. Lebensohn, U.F. Kocks, Acta Metall. Mater. 39, 2667 (1991)

    Article  Google Scholar 

  35. H. Wang, P.D. Wu, C.N. Tomé, Y. Huang, J. Mech. Phys. Solids 58, 594 (2010)

    Article  CAS  Google Scholar 

  36. H. Wang, P.D. Wu, C.N. Tomé, J. Wang, Mater. Sci. Eng. A 55, 93 (2012)

    Article  Google Scholar 

  37. H. Wang, P.D. Wu, J. Wang, C.N. Tomé, Int. J. Plast. 49, 36 (2013)

    Article  Google Scholar 

  38. H. Qiao, S.R. Agnew, P.D. Wu, Int. J. Plast. 65, 61 (2015)

    Article  CAS  Google Scholar 

  39. H. Wang, P.D. Wu, J. Wang, Metall. Mater. Trans. A 46, 3079 (2015)

    Article  CAS  Google Scholar 

  40. X.Q. Guo, A. Chapuis, P.D. Wu, S.R. Agnew, Int. J. Solids Struct. 64–65, 42 (2015)

    Article  Google Scholar 

  41. H. Wang, P.D. Wu, J. Wang, Comput. Mater. Sci. 96, 214 (2015)

    Article  CAS  Google Scholar 

  42. C. Ma, A. Chapuis, X.Q. Guo, L.Y. Zhao, P.D. Wu, Q. Liu, X.B. Mao, Mater. Sci. Eng. A 682, 332 (2017)

    Article  CAS  Google Scholar 

  43. H. Qiao, X.Q. Guo, A.L. Oppedal, H.E. Kariri, P.D. Wu, S.R. Agnew, Mater. Sci. Eng. A 687, 17 (2017)

    Article  CAS  Google Scholar 

  44. F.H. Wang, H. Qiao, Y.Q. Wang, J. Dong, Y.Y. Jiang, P.D. Wu, Int. J. Plast. 147, 103109 (2021)

    Article  CAS  Google Scholar 

  45. Q.C. He, X.D. Zhang, H. Qiao, H. Wang, P.D. Wu, Appl. Phys. A 127, 615 (2021)

    Article  CAS  Google Scholar 

  46. C. Ma, X. Duan, X.Q. Guo, H. Qiao, L.Y. Zhang, P.D. Wu, Materials 14, 6069 (2021)

    Article  CAS  Google Scholar 

  47. H. Qiao, Y.C. Xin, Z.L. Zong, P.D. Wu, Int. J. Solids Struct. 216, 211 (2021)

    Article  CAS  Google Scholar 

  48. C. Ma, H.M. Wang, T. Hama, X.Q. Guo, X.B. Mao, J. Wang, P.D. Wu, Int. J. Plast. 121, 261 (2019)

    Article  CAS  Google Scholar 

  49. S.R. Agnew, M.H. Yoo, C.N. Tomé, Acta Mater. 49, 4277 (2001)

    Article  CAS  Google Scholar 

  50. M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials (Prentice Hall, Upper Saddle River, NJ, 1998)

    Google Scholar 

  51. N.W. Landry, M. Knezevic, Materials 8, 6326 (2015)

    Article  Google Scholar 

  52. A.A. Salem, S.R. Kalidindi, S.L. Semiatin, Acta Mater. 53, 3495 (2005)

    Article  CAS  Google Scholar 

  53. L.Y. Zhao, X.Q. Guo, A. Chapuis, Y.C. Xin, Q. Liu, P.D. Wu, Metall. Mater. Trans. A 50, 118 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China (52101154, 51601218), Natural Science Foundation of Jiangsu Province (BK20200172), China Postdoctoral Science Foundation funded project (2020M671640), Project supported by the Key Laboratory of Lightweight Materials, Nanjing Tech University, and Excellent Scientific and Technological Innovation Team of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqian Guo or Hua Qiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Duan, X., Guo, X. et al. Study of Deformation Mechanisms of a High-Purity α-Titanium Plate Under Monotonic Loading with the EVPSC-TDT Model. Met. Mater. Int. 29, 315–326 (2023). https://doi.org/10.1007/s12540-022-01241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01241-5

Keywords

Navigation