Skip to main content
Log in

In-Plane Anisotropy in Mechanical Behavior and Microstructural Evolution of Commercially Pure Titanium in Tensile and Cyclic Loading

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tensile and cyclic deformation behavior of three samples oriented at 0, 45, and 90 deg to the rolling direction in the rolling direction–transverse direction (RD–TD) plane of cold-rolled and annealed plate of commercially pure titanium is studied in the present investigation. The sample along the RD (R0) shows the highest strength but lowest ductility in monotonic tension. Although ultimate tensile strength (UTS) and elongation of samples along 45 and 90 deg to the RD (R45 and R90, respectively) are similar, the former has significantly higher yield strength than the latter, indicating different strain-hardening behavior. It is found that the R90 sample exhibits the highest monotonic ductility as well as fatigue life. This is attributed to a higher propensity for twinning in this sample with the presence of multiple variants and twin intersections. Cyclic life is also influenced by the high tendency for detwinning of contraction twins in this orientation. Elastoplastic self-consistent (EPSC) simulations of one-cycle tension-compression load reversal indicate that the activity of pyramidal 〈c + a〉 slip and extension twinning oscillates during cyclic loading that builds up damage in a cumulative manner, leading to failure in fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. M. Kuruvilla, T.S. Srivatsan, M. Petraroli, and L. Park: Sadhana, 2008, vol. 33, pp. 235–50.

    Article  Google Scholar 

  2. H. Li, D.E. Mason, Y. Yang, T.R. Bieler, M.A. Crimp, and C.J. Boehlert: Phil. Mag., 2013, vol. 93, pp. 2875–95.

    Article  Google Scholar 

  3. H. Becker and W. Pantleon: Comp. Mater. Sci., 2013, vol. 76, pp. 52–59.

    Article  Google Scholar 

  4. A. Roth, M.A. Lebyodkin, T.A. Lebedkina, J.-S. Lecomte, T. Richeton, and K.E.K. Amouzou: Mater. Sci. Eng. A, 2014, vol. 596, pp. 236–43.

    Article  Google Scholar 

  5. N. Srinivasan, R. Velmurugan, R. Kumar, S.K. Singh, and B. Pant: Mater. Sci. Eng. A, 2016, vol. 674, pp. 540–51.

    Article  Google Scholar 

  6. U. Bathini, T.S. Srivatsan, Anil K. Patnaik, and C. Menzemer: J. Aerosp. Eng., 2011, vol. 24, pp. 415–24.

    Article  Google Scholar 

  7. B. Barkia, V. Doquet, J.P. Couzinié, I. Guillot, and E. Héripré: Mater. Sci. Eng. A, 2015, vol. 636, pp. 91–102.

    Article  Google Scholar 

  8. T. Hama, H. Nagao, A. Kobuki, H. Fujimoto, and H. Takuda: Mater. Sci. Eng. A, 2015, vol. 620, pp. 390–98.

    Article  Google Scholar 

  9. N. Yi, T. Hama, A. Kobuki, H. Fujimoto, and H. Takuda: Mater. Sci. Eng. A, 2016, vol. 655, pp. 70–85.

    Article  Google Scholar 

  10. K.E.K. Amouzou, T. Richeton, A. Roth, M.A. Lebyodkin, and T.A. Lebedkina: Int. J. Plasticity, 2016, vol. 80, pp. 222–40.

    Article  Google Scholar 

  11. S. Wronski, K. Wierzbanowski, M. Jedrychowski, J. Tarasiuk, M. Wronski, A. Baczmanski, and B. Bacroix: Mater. Sci. Eng. A, 2016, vol. 656, pp. 1–11.

    Article  Google Scholar 

  12. S. Sinha, A. Ghosh, and N.P. Gurao: Phil. Mag., 2016, vol. 96, pp. 1485–1508.

    Article  Google Scholar 

  13. S. Sinha, A. Pukenas, A. Ghosh, A. Singh, W. Skrotzki, and N.P. Gurao: Phil. Mag., 2017, vol. 97, pp. 775–97.

    Article  Google Scholar 

  14. S. Sinha and N.P. Gurao: Mater. Sci. Eng. A, 2017, vol. 691, pp. 100–09.

    Article  Google Scholar 

  15. M.E. Nixon, O. Cazacu, and R.A. Lebensohn: Int. J. Plasticity, 2010, vol. 26, pp. 516–32.

    Article  Google Scholar 

  16. E.C. Moreno-Valle, V. Pachla, M. Kulczyk, B. Savoini, M.A. Monge, C. Ballesteros, and I. Sabirov: Mater. Sci. Eng. A, 2013, vol. 588, pp. 7–13.

    Article  Google Scholar 

  17. Q. Cao, Q. Zhang, and X. Zhang: J. Harbin Inst. Technol., 2015, vol. 22, pp. 63–67.

    Google Scholar 

  18. J. Woo Won, K.-T. Park, S.-G. Hong, and C. S. Lee: Mater. Sci. Eng. A, 2015, vol. 637, pp. 215–21.

    Article  Google Scholar 

  19. L. Wang, H. Zhang, G. Huang, M. Cao, X. Cao, E. Mostaed, and M. Vedani: J. Mater. Res., 2016, vol. 31, pp. 3372–80.

    Article  Google Scholar 

  20. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., John Wiley & Sons, New York, NY, 1982, pp. 811–34.

    Google Scholar 

  21. J.W. Christian and S. Mahajan: Progr. Mater. Sci., 1995, vol. 39, pp. 1–157.

    Article  Google Scholar 

  22. M. Arul Kumar, A.K. Kanjarla, S.R. Niezgoda, R.A. Lebensohn, and C.N. Tome: Acta Mater., 2015, vol. 84, pp. 349–58.

    Article  Google Scholar 

  23. R. Hill: J. Mech. Phys. Solids, 1965, vol. 13, pp. 89–101.

    Article  Google Scholar 

  24. J.W. Hutchinson: Proc. R. Soc. London A, 1970, vol. 319, pp. 247–72.

    Article  Google Scholar 

  25. C.N. Tome, E.C. Oliver, and J.A. Wollmershauser: EPSC-4 Manual, 2010.

  26. C.J. Neil, J.A. Wollmershauser, B. Clausen, C.N. Tome, and S.R. Agnew: Int. J. Plasticity, 2010, vol. 26, pp. 1772–91.

    Article  Google Scholar 

  27. P.A. Turner and C.N. Tome: Acta Metall. Mater., 1994, vol. 42, pp. 4143–53.

    Article  Google Scholar 

  28. G. Proust, C.N. Tome, and G.C. Kaschner: Acta Mater., 2007, vol. 55, pp. 2137–48.

    Article  Google Scholar 

  29. C.J. Neil and S.R. Agnew: Int. J. Plasticity, 2009, vol. 25, pp. 379–98.

    Article  Google Scholar 

  30. C.F. Gu, L.S. Toth, and M. Hoffman: Acta Mater., 2014, vol. 62, pp. 212–24.

    Article  Google Scholar 

  31. D. Tromans: Int. J. Res. Rev., 2011, vol. 6, pp. 462–83.

    Google Scholar 

  32. N.P. Gurao, R. Kapoor, and S. Suwas: Acta Mater., 2011, vol. 59, pp. 3431–46.

    Article  Google Scholar 

  33. S. Suwas, B. Beausir, L.S. Toth, J.-J. Fundenberger, and G. Gottstein: Acta Mater., 2011, vol. 59, pp. 1121–33.

    Article  Google Scholar 

  34. A.A. Salem, S.R. Kalidindi, and S.L. Semiatin: Acta Mater., 2005, vol. 53, pp. 3495–3502.

    Article  Google Scholar 

  35. A.A. Salem, S.R. Kalidindi, R.D. Doherty, and S.L. Semiatin: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 259–68.

    Article  Google Scholar 

  36. N.G. Kolbasnikov, O.G. Zotov, I.S. Martyashov, and R.V. Sulyagin: Steel Transl., 2012, vol. 42, pp. 657–62.

    Article  Google Scholar 

  37. G. Proust, C.N. Tome, A. Jain, and S.R. Agnew: Int. J. Plasticity, 2009, vol. 25, pp. 861–80.

    Article  Google Scholar 

  38. N. Benmhenni, S. Bouvier, R. Brenner, T. Chauveau, and B. Bacroix: Mater. Sci. Eng. A, 2013, vol. 573, pp. 222–33.

    Article  Google Scholar 

  39. J. Zhang and S.P. Joshi: J. Mech. Phys. Solids, 2012, vol. 60, pp. 945–72.

    Article  Google Scholar 

  40. E.W. Kelley, and W.F. Hosford: “The Plastic Deformation of Magnesium,” Technical Report, 1967, https://deepblue.lib.umich.edu/handle/2027.42/5928, accessed 21 Nov. 2016.

  41. H. Mughrabi, H.W. Hoppel, and M. Kautz: Scripta Mater., 2004, vol. 51, pp. 807–12.

    Article  Google Scholar 

  42. H. Fan and J.A. El-Awady: J. Appl. Mech., 2015, vol. 82, pp. 101006-1–101006-11.

    Article  Google Scholar 

  43. M.R. Barnett: Mater. Sci. Eng. A, 2007, vol. 464, pp. 1–7.

    Article  Google Scholar 

  44. J. Capek and K. Mathis: Twinning Evolution as a Function of Loading Direction in Magnesium, 2016, http://www.xray.cz/xray/csca/kol2014/abst/capekj.htm, accessed 21 Nov. 2016.

  45. J. Capek, K. Mathis, B. Clausen, J. Straska, P. Beran, and P. Lukas: Mater. Sci. Eng. A, 2014, vol. 602, pp. 25–32.

    Article  Google Scholar 

  46. K. Mathis, G. Csiszar, J. Capek, J. Gubicza, B. Clausen, P. Lukas, A. Vinogradov, and S.R. Agnew: Int. J. Plasticity, 2015, vol. 72, pp. 127–50.

    Article  Google Scholar 

  47. L. Wu, A. Jain, D.W. Brown, G.M. Stoica, S.R. Agnew, B. Clausen, D.E. Fielden, and P.K. Liaw: Acta Mater., 2008, vol. 56, pp. 688–95.

    Article  Google Scholar 

  48. H. Qin and J.J. Jonas: Acta Mater., 2014, vol. 75, pp. 198–211.

    Article  Google Scholar 

  49. H. Nasiri-Abarbekoh, A. Ekrami, A.A. Ziaei-Moayyed, and M. Shohani: Mater. Des., 2012, vol. 34, pp. 268–74.

    Article  Google Scholar 

  50. H. Nasiri-Abarbekoh, A. Ekrami, and A.A. Ziaei-Moayyed: Mater. Des., 2013, vol. 44, pp. 528–34.

    Article  Google Scholar 

  51. F.-K. Chen and K.-H. Chiu: Proc. 11th Int. Sci. Conf. AMME, 2002, vol. 11, pp. 39–46.

  52. F.-K. Chen and K.-H. Chiu: J. Mater. Process. Technol., 2005, vol. 170, pp. 181–86.

    Article  Google Scholar 

  53. S. Bouvier, N. Benmhenni, W. Tirry, F. Gregory, M.E. Nixon, O. Cazacu, and L. Rabet: Mater. Sci. Eng. A, 2012, vol. 535, pp. 12–21.

    Article  Google Scholar 

  54. L. Wu, S.R. Agnew, Y. Ren, D.W. Brown, B. Clausen, G.M. Stoica, H.R. Wenk, and P.K. Liaw: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7057–67.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Carlos Tome, Los Alamos National Laboratory (Los Alamos, NM), and Dr. Ahmed Saleh, University of Wollongong (Wollongong, Australia), for providing the EPSC code. The Mechanical Testing Laboratory and the Texture Laboratory at the Advanced Centre for Materials Science, Indian Institute of Technology (Kanpur), are acknowledged for providing the mechanical testing and microstructure characterization facilities, respectively. One of the authors (NPG) thanks the Indian National Science Academy and Department of Science and Technology, Government of India (Science and Engineering Research Board Grant No. SB/S3/ME/65/2013), for providing financial support to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasis Sinha.

Additional information

Manuscript submitted February 25, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S., Gurao, N.P. In-Plane Anisotropy in Mechanical Behavior and Microstructural Evolution of Commercially Pure Titanium in Tensile and Cyclic Loading. Metall Mater Trans A 48, 5813–5832 (2017). https://doi.org/10.1007/s11661-017-4349-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4349-6

Navigation