Skip to main content
Log in

Experimental Characterization and Crystal Plasticity Modeling of Heterogeneous Deformation in Polycrystalline α-Ti

  • Symposium: Structural Transitions and Local Deformation Processes at and near Grain Boundaries
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Grain-level heterogeneous deformation was studied in a polycrystalline α-Ti specimen deformed by four-point bending. Dislocation slip activity in the microstructure was investigated by surface slip trace analysis. Three-dimensional–X-ray diffraction (3D-XRD) was used to investigate subsurface lattice rotations and to identify geometrically necessary dislocations (GNDs). The slip systems of local GNDs were analyzed by studying the streaking directions of reflections in corresponding Laue patterns. The analysis performed in one grain indicated that the subsurface GNDs were from the same slip system identified using slip trace analysis in backscattered electron images. A crystal plasticity finite element (CPFE) model was used to simulate deformation of the same microstructural region. The predictions of dislocation slip activity match the general aspects of the experimental observations, including the ability to simulate the activation of different slip systems in grains where multiple slip systems were activated. Prediction of local crystal rotations, however, was the least accurate aspect of the CPFE model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. OIM is a trademark of EDAX/TSL, Draper, UT.

  2. Derived from assuming uniaxial tensile stress along x.

References

  1. D. Raabe, Z. Zhao, S.J. Park, and F. Roters: Acta Mater., 2002, vol. 50, pp. 421–40.

    Article  CAS  Google Scholar 

  2. M. Sachtleber, Z. Zhao, and D. Raabe: Mater. Sci. Eng. A, 2002, vol. 336, pp. 81–87.

    Article  Google Scholar 

  3. N. Zhang and W. Tong: Int. J. Plast., 2004, vol. 20, pp. 523–42.

    Article  CAS  Google Scholar 

  4. B.C. Larson, W. Yang, G.E. Ice, J.D. Budai, and J.Z. Tischler: Nature, 2002, vol. 415, pp. 887–90.

    Article  CAS  Google Scholar 

  5. W. Liu, G.E. Ice, B.C. Larson, W. Yang, J.Z. Tischler, and J.D. Budai: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1963–67.

    Article  CAS  Google Scholar 

  6. W. Liu, G.E. Ice, B.C. Larsen, W. Yang, and J.Z. Tischler: Ultramicroscopy, 2005, vol. 103, pp. 199–204.

    Article  CAS  Google Scholar 

  7. G.E. Ice and R.I. Barabash: in Dislocations in Solids, F.R.N. Nabarro and J.P. Hirth, eds., Elsevier, New York, 2007, vol. 13, chap. 79, pp. 500–601.

  8. R.I. Barabash, G.E. Ice, B.C. Larson, G.M. Pharr, K.-S. Chung, and W. Yang: Appl. Phys. Lett., 2001, vol. 79, pp. 749–51.

    Article  CAS  Google Scholar 

  9. R.I. Barabash, G.E. Ice, and F.J. Walker: J. Appl. Phys., 2003, vol. 93, pp. 1457–64.

    Article  CAS  Google Scholar 

  10. T. Ohashi, R.I. Barabash, J.W.L. Pang, G.E. Ice, and O.M. Barabash: Int. J. Plast., 2009, vol. 25, pp. 920–41.

    Article  CAS  Google Scholar 

  11. R.I. Barabash, G.E. Ice, W. Liu, and O.M. Barabash: Micron, 2009, vol. 40, pp. 28–36.

    Article  CAS  Google Scholar 

  12. S.R. Kalidindi, C.A. Bronkhorst, and L. Anand: J. Mech. Phys. Solids, 1992, vol. 40, pp. 537–79.

    Article  CAS  Google Scholar 

  13. A. Staroselsky and L. Anand: Int. J. Plast., 2003, vol. 19, pp. 1843–64.

    Article  CAS  Google Scholar 

  14. R. Becker and S. Panchanadeeswaran: Acta Metall. Mater., 1995, vol. 43, pp. 2701–19.

    Article  CAS  Google Scholar 

  15. D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, and S. Zaefferer: Acta Mater., 2001, vol. 49, pp. 3433–41.

    Article  CAS  Google Scholar 

  16. S.R. Kalidindi, A. Bhattacharyya, and R.D. Doherty: Proc. R. Soc. London, 2004, vol. 460A, pp. 1935–56.

    Google Scholar 

  17. F. Delaire, J.L. Raphanel, and C. Rey: Acta Mater., 2000, vol. 48, pp. 1075–87.

    Article  CAS  Google Scholar 

  18. A. Tatschl and O. Kolednik: Mater. Sci. Eng. A, 2004, vol. 364, pp. 384–99.

    Article  Google Scholar 

  19. A. Musienko, A. Tatschl, K. Schmidegg, O. Kolednik, R. Pippan, and G. Cailletaud: Acta Mater., 2007, vol. 55, pp. 4121–36.

    Article  CAS  Google Scholar 

  20. X. You, T. Connolley, P.E. McHugh, H. Cuddy, and C. Motz: Acta Mater., 2006, vol. 54, pp. 4825–40.

    Article  CAS  Google Scholar 

  21. T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, and D. Raabe: Int. J. Plast., 2009, vol. 25, pp. 1655–83.

    Article  CAS  Google Scholar 

  22. E. Héripréa, M. Dexeta, J. Crépina, L. Gélébart, A. Roos, M. Bornert, and D. Caldemaison: Int. J. Plast., 2007, vol. 23, pp. 1512–39.

    Article  Google Scholar 

  23. F.P.E. Dunne, A. Walker, and D. Rugg: Proc. R. Soc., 2007, vol. 463, pp. 1467–89.

    Article  CAS  Google Scholar 

  24. L. Wang, Y. Yang, P. Eisenlohr, T.R. Bieler, M.A. Crimp, and D.E. Mason: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 421–30.

    Article  CAS  Google Scholar 

  25. B. Wagenknecht, D. Libiran, S. Poon, and K. Sztykiel: “In-Situ Four-Point Bending Apparatus for Scanning Electron Microscopes,” Senior Design Project, Mechanical Engineering, Michigan State University, Apr. 2008.

  26. J.J. Fundenbergert, M.J. Philippe, F. Wagner, and C. Esling: Acta Mater., 1997, vol. 45, pp. 4041–55.

    Article  Google Scholar 

  27. X. Tan, H. Guo, H. Gu, C. Laird, and N.D.H. Munroe: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 513–18.

    Article  CAS  Google Scholar 

  28. M.H. Yoo: Metall. Trans. A, 1981, vol. 12, pp. 409–18.

    CAS  Google Scholar 

  29. F. Bridier, P. Villechaise, and J. Mendez: Acta Mater., 2005, vol. 53, pp. 555–67.

    Article  CAS  Google Scholar 

  30. S. Zaefferer: Mater. Sci. Eng. A, 2003, vol. 344, pp. 20–30.

    Article  Google Scholar 

  31. A.A. Salem, S.R. Kalidindi, and S.L. Semiatin: Acta Mater., 2005, vol. 53, pp. 3495–3502.

    Article  CAS  Google Scholar 

  32. X. Wu, S.R. Kalidindi, C. Necker, and A.A. Salem: Acta Mater., 2007, vol. 55, pp. 423–32.

    Article  CAS  Google Scholar 

  33. F. Roters, Y. Wang, J. Kuo, and D. Raabe: Adv. Eng. Mater., 2004, vol. 6, pp. 653–56.

    Article  CAS  Google Scholar 

  34. M.A. Krivoglaz: Theory of X-Ray and Thermal Neutron Scattering by Real Crystals, Springer-Verlag, New York, NY, 1996.

    Google Scholar 

  35. R.I. Barabash, M.A. Krivoglaz, and K.P. Ryaboshapka: Fiz. Metallov. Metalloved., 1976, vol. 41, pp. 33–43.

    Google Scholar 

  36. R.I. Barabash, G.E. Ice, M. Kumar, J. Ilavsky, and J. Belak: Int. J. Plast., 2009, vol. 25, pp. 2081–93.

    Article  CAS  Google Scholar 

  37. S.K. Mishra, P. Pant, K. Narasimhan, A.D. Rollett, and I. Samajdar: Scripta Mater., 2009, vol. 61, pp. 273–76.

    Article  CAS  Google Scholar 

  38. W.A.T. Clark, R.H. Wagoner, Z.Y. Shen, T.C. Lee, I.M. Robertson, and H.K. Birnbaum: Scripta Metall. Mater., 1992, vol. 26, pp. 203–06.

    Article  CAS  Google Scholar 

  39. J. Luster and M.A. Morris: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1745–56.

    Article  CAS  Google Scholar 

  40. W.G. Yang, B.C. Larson, G.E. Ice, J.Z. Tischler, J.D. Budai, K.-S. Chung, and W.P. Lowe: Appl. Phys. Lett., 2003, vol. 82, pp. 3856–58.

    Article  CAS  Google Scholar 

  41. J.V. Bernier, J.-S. Park, A.L. Pilchak, M.G. Glavicic, and M.P. Miller: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 3120–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Materials World Network grant from NSF (Grant No. DMR-0710570) and DFG (Grant No. EI 681/2-1). Use of the Advanced Photon Source was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Two of the authors (RIB and GEI) are supported by the United States Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.R. Bieler.

Additional information

Manuscript submitted January 21, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Barabash, R., Yang, Y. et al. Experimental Characterization and Crystal Plasticity Modeling of Heterogeneous Deformation in Polycrystalline α-Ti. Metall Mater Trans A 42, 626–635 (2011). https://doi.org/10.1007/s11661-010-0249-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0249-8

Keywords

Navigation