Skip to main content
Log in

Oxide Scale Characterization and Study of Oxidation Kinetics in T91 Steel Exposed to Dry Air at High Temperatures (873–1073 K)

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, the oxidation response of a T91 steel in dry air environment has been investigated by performing cyclic oxidation tests at 873, 973 and 1073 K for a total duration of 1000 h with intermediate intervals. The temperature range for this study is chosen to be higher than the operating temperature range of the alloy to accelerate the oxidation kinetics. Developing a comprehensive understanding of the mechanisms and kinetics involved at such accelerated oxidation environments would help to formulate better strategies for countering oxidation related failure events. The results of this study showed that the oxidation rate is greatly influenced by temperature as well as exposure time, and follows a near-parabolic rate law. Characterization of the oxide scales revealed formation of dual oxide layers where the inner layer is primarily rich in Fe and Cr, and the outer layer in Fe only. At 1073 K, formation of cracks can be observed in the oxide scales after 24 h, which became more severe after 1000 h. The oxidation kinetics, when fitted to an Arrhenius type equation, can be associated with activation energy (Q) and parabolic rate constant (kp) values. The Q values lie within 104–109 kJ/mol, whereas the kp values increase with temperature due to increase in the reaction rate. The kinetic equation developed based on the Q and kp values can be used to predict the thickness (inner, outer and overall) of the oxide scales in T91 steel at any temperature and time within the studied ranges.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Laverde, T. Gómez-Acebo, F. Castro, Corros. Sci. 46, 613 (2004)

    Article  CAS  Google Scholar 

  2. C. Pandey, N. Saini, M.M. Mahapatra, P. Kumar, Int. J. Hydrogen Energ. 41, 17695 (2016)

    Article  CAS  Google Scholar 

  3. Q. Shi, W. Yan, Y. Li, N. Zhang, Y. Shan, K. Yang, H. Abe, J. Mater. Sci. Technol. 64, 114 (2020)

    Article  CAS  Google Scholar 

  4. D. Jiang, H. Xu, Z. Zhu, B. Deng, N. Zhang, Oxid. Met. 87, 189 (2017)

    Article  CAS  Google Scholar 

  5. Y. Gui, Z. Liang, Q. Zhao, Oxid. Met. 92, 123 (2019)

    Article  CAS  Google Scholar 

  6. S. Swaminathan, C. Mallika, N.G. Krishna, C. Thinaharan, T. Jayakumar, U. , Kamachi Mudali. Corros. Sci. 79, 59 (2014)

    Article  CAS  Google Scholar 

  7. P. Mishra, R.S. Rajpurohit, N.C.S. Srinivas, G.V.S. Sastry, V. Singh, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00811-9

    Article  Google Scholar 

  8. J.P.T. Vossen, P. Gawenda, K. Rahts, M. Röhrig, M. Schorr, M. Schütze, Mater. High Temp. 14, 387 (1997)

    Article  CAS  Google Scholar 

  9. R.L. Klueh, Nucl. Eng. Des. 72, 329 (1982)

    Article  CAS  Google Scholar 

  10. M.A. Abro, J. Hahn, D.B. Lee, Met. Mater. Int. 24, 507 (2018)

    Article  CAS  Google Scholar 

  11. Z. Zhu, H. Xu, D. Jiang, G. Yue, B. Li, N. Zhang, J. Supercrit. Fluid. 108, 56 (2016)

    Article  CAS  Google Scholar 

  12. H. Li, Q. Cao, Z. Zhu, Mater. High Temp. 36, 111 (2019)

    Article  CAS  Google Scholar 

  13. A.K. Rai, R. Biswal, R.K. Gupta, S.K. Rai, R. Singh, U.K. Goutam, K. Ranganathan, P. Ganesh, R. Kaul, K.S. Bindra, Appl. Surf. Sci. 495, 143611 (2019)

    Article  CAS  Google Scholar 

  14. P. Ampornrat, G.S. Was, J. Nucl. Mater. 371, 1 (2007)

    Article  CAS  Google Scholar 

  15. M. Soleimani, H. Mirzadeh, C. Dehghanian, Mater. Today Commun. 22, 100745 (2020)

    Article  CAS  Google Scholar 

  16. M. Soleimani, H. Mirzadeh, C. Dehghanian, Met. Mater. Int. 26, 882 (2020)

    Article  Google Scholar 

  17. S.B. Narasimhachary, A. Saxena, Int. J. Fatigue 56, 106 (2013)

    Article  CAS  Google Scholar 

  18. Y. Shen, X. Zhou, Z. Shang, Met. Mater. Int. 22, 459 (2016)

    Article  CAS  Google Scholar 

  19. X. Zhong, X. Wu, E.H. Han, J. Supercrit. Fluid. 72, 68 (2012)

    Article  CAS  Google Scholar 

  20. V.N. Skorobogatykh, I.A. Shchenkova, E.A. Tugolukov, Therm. Eng. 57, 9 (2010)

    Article  Google Scholar 

  21. S. Fetni, D. Montero, C. Boubahri, D. Brouri, J. Briki, Oxid. Met. 90, 291 (2018)

    Article  CAS  Google Scholar 

  22. R. Viswanathan, J. Sarver, J.M. Tanzosh, J. Mater. Eng. Perform. 15, 255 (2006)

    Article  CAS  Google Scholar 

  23. Y. Li, J. Du, L. Li, K. Gao, X. Pang, A.A. Volinsky, Eng. Fail. Anal. 111, 104451 (2020)

    Article  CAS  Google Scholar 

  24. A. Baltušnikas, A. Grybėnas, R. Kriūkienė, I. Lukošiūtė, V. Makarevičius, J. Mater. Eng. Perform. 28, 1480 (2019)

    Article  CAS  Google Scholar 

  25. F. Rouillard, T. Furukawa, Corros. Sci. 105, 120 (2016)

    Article  CAS  Google Scholar 

  26. T. Sundararajan, S. Kuroda, J. Kawakita, S. Seal, Surf. Coatings Technol. 201, 2124 (2006)

    Article  CAS  Google Scholar 

  27. L. Martinelli, C. Desgranges, F. Rouillard, K. Ginestar, M. Tabarant, K. Rousseau, Corros. Sci. 100, 253 (2015)

    Article  CAS  Google Scholar 

  28. P. Mathiazhagan, A.S. Khanna, High Temp. Mater. Process. 30, 43 (2011)

    Article  CAS  Google Scholar 

  29. A.P. Greeff, C.W. Louw, H.C. Swart, Corros. Sci. 42, 1725 (2000)

    Article  CAS  Google Scholar 

  30. F. Rouillard, L. Martinelli, Oxid. Met. 77, 71 (2012)

    Article  CAS  Google Scholar 

  31. R. Sharma, A. Roy, P.S. De, Intermetallics 135, 107215 (2021)

    Article  CAS  Google Scholar 

  32. X.Z. Li, H.C. Li, Y.T. Wang, B. Li, Surf. Coat. Tech. 232, 627 (2013)

    Article  CAS  Google Scholar 

  33. A.G. Fernández, B. Muñoz-Sánchez, J. Nieto-Maestre, L.F. Cabeza, Appl. Sci. 10, 4305 (2020)

    Article  CAS  Google Scholar 

  34. Y. kwan Kang, Y. He, H.S. Lee, B.S. Kim, L. Xu, K. Shin, Korean J. Met. Mater. 57, 817 (2019)

  35. J. Zurek, E. Wessel, L. Niewolak, F. Schmitz, T.U. Kern, L. Singheiser, W.J. Quadakkers, Corros. Sci. 46, 2301 (2004)

    Article  CAS  Google Scholar 

  36. I.G. Wright, R.B. Dooley, Int. Mater. Rev. 55, 129 (2010)

    Article  CAS  Google Scholar 

  37. K. Shan, Z.Z. Yi, X.T. Yin, D. Dastan, S. Dadkhah, B.T. Coates, H. Garmestani, Adv. Powder Technol. 31, 4657 (2020)

    Article  CAS  Google Scholar 

  38. K. Shan, Z.Z. Yi, X.T. Yin, L. Cui, D. Dastan, H. Garmestani, F.M. Alamgir, J. Alloy. Compd. 855, 157465 (2021)

    Article  CAS  Google Scholar 

  39. K. Shan, F. Zhai, Z.Z. Yi, X.T. Yin, D. Dastan, F. Tajabadi, A. Jafari, S. Abbasi, Surf. Interfaces 23, 100905 (2021)

    Article  CAS  Google Scholar 

  40. P. Mathiazhagan, A.S. Khanna, Arab. J. Sci. Eng. 34, 159 (2009)

    CAS  Google Scholar 

  41. F. Rouillard, F. Charten, G. Moine, Corrosion 67, 095001 (2011)

    Article  Google Scholar 

  42. M.G.C. Cox, B. Mcenaney, V.D. Scott, Nat. Phys. Sci. 237, 140 (1972)

    Article  CAS  Google Scholar 

  43. N. qiang Zhang, Z. liang Zhu, H. Xu, X. ping Mao, J. Li, Corros. Sci. 103, 124 (2016)

  44. L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Delpech, G. Santarini, J. Favergeon, G. Moulin, M. Tabarant, G. Picard, Corros. Sci. 50, 2523 (2008)

    Article  CAS  Google Scholar 

  45. D.G. He, Y.C. Lin, Y. Tang, L. Li, J. Chen, M.S. Chen, X.M. Chen, Mater. Sci. Eng. A 746, 372 (2019)

    Article  CAS  Google Scholar 

  46. C.N. Athreya, K. Deepak, D. Kim, B. De Boer, S. Mandal, V.S. Sarma, J. Alloy. Compd. 778, 224 (2019)

    Article  CAS  Google Scholar 

  47. J. Yuan, W. Wang, H. Zhang, L. Zhu, S. Zhu, F. Wang, Corros. Sci. 109, 36 (2016)

    Article  CAS  Google Scholar 

  48. M.G. Fontana, Corrosion Engineering, 3rd edn. (McGraw-Hill, Singapore, 1987)

    Google Scholar 

  49. A.S. Khanna, Introduction to High Temperature Oxidation and Corrosion, (ASM International, Materials Park, Ohio, 2002)

  50. L. Sun, W. Yan, Adv. Mater. Sci. Eng. 2017, 9154934 (2017)

    Google Scholar 

  51. L.L. Wei, L.Q. Chen, M.Y. Ma, H.L. Liu, R.D.K. Misra, Mater. Chem. Phys. 205, 508 (2018)

    Article  CAS  Google Scholar 

  52. L. Tomlinson, N.J. Cory, Corros. Sci. 29, 939 (1989)

    Article  CAS  Google Scholar 

  53. H. Dong, P. Wang, D. Li, Y. Li, Corros. Sci. 118, 129 (2017)

    Article  CAS  Google Scholar 

  54. Z. Dong, M. Li, Y. Behnamian, J.L. Luo, W. Chen, B.S. Amirkhiz, P. Liu, X. Pang, J. Li, W. Zheng, D. Guzonas, C. Xia, Corros. Sci. 166, 108432 (2020)

    Article  CAS  Google Scholar 

  55. M.C. Demizieux, C. Desgranges, L. Martinelli, J. Favergeon, K. Ginestar, Oxid. Met. 91, 191 (2019)

    Article  CAS  Google Scholar 

  56. D.M. Gorman, A.T. Fry, Oxid. Met. 88, 435 (2017)

    Article  CAS  Google Scholar 

  57. K. Shan, Z.Z. Yi, X.T. Yin, D. Dastan, F. Altaf, H. Garmestani, F.M. Alamgir, Surf. Interfaces 21, 100762 (2020)

    Article  CAS  Google Scholar 

  58. J. Zurek, E. De Bruycker, S. Huysmans, W.J. Quadakkers, Corros. 70, 112 (2014)

    Article  CAS  Google Scholar 

  59. A. Bakhshi-Zadeh, S. Salmani, M.A. Faghihi-Sani, H. Abdoli, N. Jalili, Oxid. Met. 93, 401 (2020)

    Article  CAS  Google Scholar 

  60. K. Shan, Z.Z. Yi, X.T. Yin, D. Dastan, H. Garmestani, Dalt. Trans. 49, 8549 (2020)

    Article  CAS  Google Scholar 

  61. J. Yuan, X. Wu, W. Wang, S. Zhu, F. Wang, Materials 7, 2772 (2014)

    Article  CAS  Google Scholar 

  62. D. Zhang, J. Xu, G. Zhao, Y. Guan, M. Li, Chin. J. Mater. Res. 22, 599 (2008)

    Google Scholar 

  63. R.L. Klueh, D.R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, (ASTM International, West Conshohocken, PA, 2001)

  64. Z. Zhu, H. Xu, D. Jiang, X. Mao, N. Zhang, Corros. Sci. 113, 172 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research grant received from NTPC Energy Technology Research Alliance, India (Grant No.: 9100000178-162-1001) for this work is appreciatively acknowledged. Technical support from Mr. Bhaskar Santu Mudliyar for the SEM analysis is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Sanyal, S., Halder, P. et al. Oxide Scale Characterization and Study of Oxidation Kinetics in T91 Steel Exposed to Dry Air at High Temperatures (873–1073 K). Met. Mater. Int. 28, 1864–1880 (2022). https://doi.org/10.1007/s12540-021-01088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01088-2

Keywords

Navigation