Skip to main content
Log in

Evolution of Crystallographic Structure of M23C6 Carbide Under Thermal Aging of P91 Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The structural changes of P91 steel after different heat treatment and M23C6 lattice expansion are well described by JMA kinetics law; however, the role of molybdenum on the M23C6 lattice expansion is not clearly revealed. The aim of the present work is to investigate the solubility of molybdenum in M23C6 lattice when iron or chromium atoms are replaced by molybdenum and to examine the effect of crystallographic structure changes on the mechanical properties of thermal aged P91 steel. Rietveld analysis of electrochemically extracted residues from the as-received and thermally aged at 600, 650 and 700 °C steel revealed that it is possible to measure and evaluate quantitatively the fraction of 8c crystallographic site occupation by molybdenum atoms of the M23C6 lattice. It was shown that the value of the site occupation factor plotted in natural logarithmic scale increases linearly and obeys Johnson–Mehl–Avrami kinetic law, giving Avrami exponent navg = 0.3356 and activation energy E = 272 kJ/mol. Hardness measurements of the aged samples indicate that the deterioration of properties is closely coherent to the growth of crystallite size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Czyrska-Filemonowicz, A. Zielińska-Lipiec, and P.J. Ennis, Modified 9% Cr Steels for Advanced Power Generation: Microstructure and Properties, J. Achiev. Mater. Manuf. Eng., 2006, 19(2), p 43–48

    Google Scholar 

  2. F. Abe, M. Taneike, and K. Sawada, Alloy Design of Creep Resistant 9Cr Steel Using a Dispersion of Nano-sized Carbonitrides, Int. J. Press. Vessels Pip., 2007, 84(1-2), p 3–12

    Article  Google Scholar 

  3. W. Bendick, L. Cipolla, J. Gabrel, and J. Hald, New ECCC Assessment of Creep Ruptures Strength for Steel Grade X10CrMoVNb9-1 (Grade91), Int. J. Press. Vessels Pip., 2010, 87(6), p 304–309

    Article  Google Scholar 

  4. F. Abe, Grade 91 Heat-Resistant Martensitic Steel, Coal Power Plant Materials and Life Assessment—Developments and Applications, Woodhead Publishing, Amsterdam, 2014, p 3–49

    Google Scholar 

  5. A.D. Gianfrancesco, L. Cipolla, F. Cirilli, G. Cumino, and S. Caminada, Microstructural Stability and Creep Data Assessment of Tenaris Grades 91 and 911, https://www.phase-trans.msm.cam.ac.uk/2005/LINK/147.pdf, 2005. Accessed 13 Sept 2017

  6. D.R. Barbadikar, G.S. Deshmukh, L. Maddi, K. Laha, P. Parameswaran, A.R. Ballal, D.R. Peshwe, R.K. Paretkar, M. Nandagopal, and M.D. Mathew, Effect of Normalizing and Tempering Temperatures on Microstructure and Mechanical Properties of P92 Steel, Int. J. Press. Vessels Pip., 2015, 132-133, p 97–105

    Article  Google Scholar 

  7. G. Golański, A. Zielińska-Lipiec, S. Mroziński, and C. Kolan, Microstructural Evolution of Aged Heat-Resistant Cast Steel Following Strain Controlled Fatigue, Mater. Sci. Eng. A, 2015, 627, p 106–110

    Article  Google Scholar 

  8. N.I. Medvedeva, D.C. Van Aken, and J.E. Medvedeva, Stability of Binary and Ternary M23C6 Carbides from First Principles, Comput. Mater. Sci., 2015, 96, p 159–164

    Article  Google Scholar 

  9. F.J. Franck, P. Tambuyser, and I. Zubani, X-ray Powder Diffraction Evidence for the Incorporation of W and Mo Into M23C6 Extracted from High-Temperature Alloys, J. Mater. Sci., 1982, 17(10), p 3057–3065

    Article  Google Scholar 

  10. J.Y. Xie, J. Shen, N. Chen, and S. Seetharaman, Site Preference and Mechanical Properties of Cr23−xTxC6 and Fe21T2C6 (T = Mo, W), Acta Mater., 2006, 54(18), p 4653–4658

    Article  Google Scholar 

  11. A. Aghajani, Ch. Somsen, and G. Eggeler, On the Effect of Long-Term Creep on the Microstructure of a 12% Chromium Tempered Martensite Ferritic Steel, Acta Mater., 2009, 57(17), p 5093–5106

    Article  Google Scholar 

  12. S. Spigarelli, Microstructure-Based Assessment of Creep Rupture Strength in 9Cr Steels, Int. J. Press. Vessels Pip., 2013, 101, p 64–71

    Article  Google Scholar 

  13. H. Ghassemi-Armaki, R.P. Chen, K. Maruyama, M. Yoshizawa, and M. Igarashi, Static Recovery of Tempered Lath Martensite Microstructures During Long-Term Aging in 9–12% Cr Heat Resistant Steels, Mater. Lett., 2009, 63(28), p 2423–2425

    Article  Google Scholar 

  14. J.Y. Xie, N.X. Chen, L.D. Teng, and S. Seetharaman, Atomistic Study on the Site Preference and Thermodynamic Properties for Cr23−xFexC6, Acta Mater., 2005, 53(20), p 5305–5312

    Article  Google Scholar 

  15. J.Y. Xie, L.D. Teng, N.X. Chen, and S. Seetharaman, Atomistic Simulation on the Structural Properties and Phase Stability for Cr23C6 and Mn23C6, J. Alloys Compd., 2006, 420(1-2), p 269–272

    Article  Google Scholar 

  16. F. Abe, T. Horiuchi, M. Taneike, K. Kimura, S. Muneki, and H. Okada, Microstructure Design Near Grain Boundaries for Creep Resistant Tempered-Martensitic 9Cr Steels for 650 °C USC Boilers, in Proceedings of TMS Symposium on Creep Deformation: Fundamentals and Applications, Seattle, USA, ed. by R.S., Mishra, J.C. Earthman, S.V. Raj 2002, p 341–350

  17. F. Abe, T. Horiuchi, M. Taneike, and K. Sawada, Stabilization of Martensitic Microstructure in Advanced 9Cr Steel During Creep at High Temperature, Mater. Sci. Eng. A, 2004, 378(1-2), p 299–303

    Article  Google Scholar 

  18. A. Baltušnikas, I. Lukošiūtė, V. Makarevičius, R. Kriūkienė, and A. Grybėnas, Influence of Thermal Exposure on Structural Changes of M23C6 Carbide in P91 Steel, J. Mater. Eng. Perform., 2016, 25(5), p 1945–1951

    Article  Google Scholar 

  19. A. Le Bail, H. Duroy, and J.L. Fourquet, Ab Initio Structure Determination of LiSbWO6 by X-ray Powder Diffraction, Mater. Res. Bull., 1988, 23(3), p 447–452

    Article  Google Scholar 

  20. Bruker AXS, TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data. User’s Manual, Bruker AXS, Karlsruhe, Germany, 2008

  21. R.W. Cheary, A.A. Coelho, and J.P. Cline, Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers, J. Res. Natl. Inst. Stand. Technol., 2004, 109(1), p 1–25

    Article  Google Scholar 

  22. P. Šohaj, V. Jan, and O. Dvořáček, Evaluation of microstructural stability of creep-resistant steels weld joints on the basis of a computational modeling, METAL 2010, in 19th International Metallurgical and Materials Conference, Rožnov pod Radhoštěm, Česká Republika, https://www.vutbr.cz/en/research-and-development/publications?action=detail&pub_id=86954. Accessed 13 Sept 2017

  23. C.M. Fang, M.A. van Huis, M.H.F. Sluiter, and H.W. Zandbergen, Stability, Structure and Electronic properties Of γ-Fe23C6 from First-Principles Theory, Acta Mater., 2010, 58(8), p 2968–2977

    Article  Google Scholar 

  24. V.K. Pecharsky and P.E. Zavalji, Fundamentals of Powder Diffraction and Structural Characterization of Materials, Springer, New York, 2003, p 713

    Google Scholar 

  25. J.W. Christian, The Theory of Transformation in Metals and Alloys, 2nd ed., Pergamon, New York, 1975, p 586

    Google Scholar 

  26. A. Baltušnikas, R. Levinskas, and I. Lukošiūte, Analysis of Heat Resistant Steel State by Changes of Lattices Parameters of Carbide Phases, Mater. Sci. Medzg., 2008, 14(3), p 210–214

    Google Scholar 

  27. H. Nitta, T. Yamamoto, R. Kanno, K. Takasawa, T. Iida, Y. Yamazaki, S. Ogu, and Y. Iijima, Diffusion of Molybdenum in α-Iron, Acta Mater., 2002, 50(16), p 4117–4125

    Article  Google Scholar 

  28. H.K.D.H. Bhadeshia, Design of Ferritic Creep-Resistant Steels, ISIJ Int., 2001, 41(6), p 626–640

    Article  Google Scholar 

  29. Y. Xu, X. Zhang, Y. Tian, Ch. Chen, Y. Nan, H. He, and M. Wang, Study on the Nucleation and Growth of M23C6 Carbides in a 10% Cr Martensite Ferritic Steel After Long-Term Aging, Mater. Charact., 2016, 111, p 122–127

    Article  Google Scholar 

  30. C. Pandey, A. Giri, and M.M. Mahapatra, Evolution of Phases in P91 Steel in Various Heat Treatment Conditions and Their Effect on Microstructure Stability and Mechanical Properties, Mater. Sci. Eng. A, 2016, 664, p 58–74

    Article  Google Scholar 

  31. F. Masuyama, Hardness Model for Creep-Life Assessment of High-Strength Martensitic Steels, Mater. Sci. Eng. A, 2009, 510–511, p 154–157

    Article  Google Scholar 

  32. S. Khayatzadeh, D.W.J. Tanner, C.E. Truman, P.E.J. Flewitt, and D.J. Smith, Influence of Thermal Ageing on the Creep Behaviour of a P92 Martensitic Steel, Mater. Sci. Eng. A, 2017, 708, p 544–555

    Article  Google Scholar 

  33. A. Grybėnas, V. Makarevičius, A. Baltušnikas, I. Lukošiūtė, and R. Kriūkienė, Correlation Between Structural Changes of M23C6 Carbide and Mechanical Behaviour of P91 Steel After Thermal Aging, Mater. Sci. Eng. A, 2017, 696, p 453–460

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by a Grant (No. MIP-023/2014) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arūnas Baltušnikas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltušnikas, A., Grybėnas, A., Kriūkienė, R. et al. Evolution of Crystallographic Structure of M23C6 Carbide Under Thermal Aging of P91 Steel. J. of Materi Eng and Perform 28, 1480–1490 (2019). https://doi.org/10.1007/s11665-019-03935-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-03935-1

Keywords

Navigation