Skip to main content
Log in

Morphology and Buckling of the Oxide Scale after Fe–9Cr Steel Oxidation in Water Vapor Environment

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Under water vapor exposure at 550–560 °C, Fe–9Cr ferritic–martensitic steels form a triplex oxide scale made of an outer magnetite layer surrounded by a hematite layer and an inner Fe–Cr spinel layer. Long-time oxidation tests have been performed to study scale degradation with time. It revealed that buckling and spallation of the oxide scale always occurred during isothermal oxidation or during cooling down to room temperature. The interfacial zone of delamination has been proved to be located inside the magnetite layer, where a voids belt is formed and grows. It is assumed that voids are the preponderant factor initiating delamination of the magnetite layer under compressive stresses during the oxide scale growth. A mechanism of accumulation of vacancies leading to voids formation and then to the spallation of the outer oxide scale is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. J. Armitt, R. Holmes, M. I. Manning, D. B. Meadowcroft and E. Metcalfe, EPRI Report FP-686 (1978).

  2. I. G. Wright and R. B. Dooley, International Materials Reviews 55, (3), 129 (2010).

    Article  Google Scholar 

  3. J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).

    Article  Google Scholar 

  4. W. J. Quadakkers, P. J. Ennis, J. Zürek and M. Michalik, Materials at High Temperatures 22, (1–2), 47 (2005).

    Google Scholar 

  5. P. J. Ennis and W. J. Quadakkers, International Journal of Pressure Vessels and Piping 84, 75 (2007).

    Article  Google Scholar 

  6. M. Schütze, D. Renusch and M. Schorr, Materials at High Temperatures 22, (1–2), 113 (2005).

    Google Scholar 

  7. N. Nishimura, N. Komai, Y. Hirayama and F. Masuyama, Materials at High Temperatures 22, (1–2), 3 (2005).

    Article  Google Scholar 

  8. D. Laverde, T. Gomez-Acebo and F. Castro, Corrosion Science 46, 613 (2006).

    Article  Google Scholar 

  9. S. Osgerby, Materials at High Temperatures 17, (2), 307 (2000).

    Article  Google Scholar 

  10. N. Otsuka, Materials at High Temperatures 22, (1–2), 131 (2005).

    Article  Google Scholar 

  11. C. Cabet, J. L. Courouau, F. Dalle, C. Desgranges, L. Forest, L. Martinelli and M. Sauzay, in Proceeding of the Structural Materials for Innovative Nuclear Systems (SMINS-3) Workshop (2013), p. 55.

  12. L. Martinelli, C. Desgranges, F. Rouillard, K. Ginestar, M. Tabarant and K. Rousseau, Corrosion Science 100, 253 (2015).

    Article  Google Scholar 

  13. R. Viswanathan, J. Sarver and J. M. Tanzosh, Journal of Materials Engineering and Performance 15, (3), 255 (2006).

    Article  Google Scholar 

  14. S. R. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Science 53, 775 (2008).

    Article  Google Scholar 

  15. N. H. Lee, S. Kim, B. H. Choe, K. B. Yoon and D. Kwon, Engineering Failure Analysis 16, 2031 (2009).

    Article  Google Scholar 

  16. X. Zhong, X. Wu and E. H. Han, Journal of Supercritical Fluids 72, 68 (2012).

    Article  Google Scholar 

  17. H. E. Evans, International Materials Reviews 40, (1), 1 (1995).

    Article  Google Scholar 

  18. H. E. Evans, Materials at High Temperatures 22, (1–2), 155 (2005).

    Article  Google Scholar 

  19. M. Schütze, Corrosion Engineering, Science and Technology 48, (4), 303 (2013).

    Article  Google Scholar 

  20. M. Rudolphi and M. Schütze, Oxidation of Metals 79, 167 (2013).

    Article  Google Scholar 

  21. I. G. Wright, M. Schütze, P. F. Tortorelli and R. B. Dooley, Materials at High Temperatures 24, (4), 265 (2007).

    Article  Google Scholar 

  22. A. Rahmel and J. Tobolski, Corrosion Science 5, 333 (1965).

    Article  Google Scholar 

  23. G. Parry, A. Cimetière, C. Coupeau, J. Colin and J. Grilhé, Physical Review E74, 066601 (2006).

    Google Scholar 

  24. T. Maruyama and N. Fukagai, Materials Science Forum 461–464, 807 (2004).

    Article  Google Scholar 

  25. M. C. Demizieux, C. Desgranges, L. Martinelli and J. Favergeon, Corrosion Science (2018).

  26. D. L. A. De Faria, S. Venauncio Silva and M. T. De De Oliveira, Journal of Raman Spectroscopy 28, 873 (1997).

    Article  Google Scholar 

  27. D. K. Bora, A. Braun, S. Erat, O. Safonova, T. Graule and E. C. Constable, Current Applied Physics 12, 817 (2012).

    Article  Google Scholar 

  28. M. Schütze, Protective Oxide Scales and their Breakdown (Wiley, 1997).

  29. H. E. Evans and M. P. Taylor, Surface and Coatings Technology 94–95, 27 (2007).

    Google Scholar 

  30. V. K. Tolpygo, J. R. Dryden and D. R. Clarke, Acta Materialia 46, (3), 927 (1998).

    Article  Google Scholar 

  31. M. C. Demizieux, J. Favergeon, L. Martinelli, C. Desgranges and G. Sattonay, Oxidation of Metals 88, (1–2), 57 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to E. Amblard for providing Raman microscope at CEN/DEN/DANS/SECR/LECBA, M. Tabarant for GD-OES analyses, K. Rousseau for TEM observations, AREVA-NP and EDF for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Favergeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demizieux, MC., Desgranges, C., Martinelli, L. et al. Morphology and Buckling of the Oxide Scale after Fe–9Cr Steel Oxidation in Water Vapor Environment. Oxid Met 91, 191–212 (2019). https://doi.org/10.1007/s11085-018-9873-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-018-9873-2

Keywords

Navigation