Skip to main content
Log in

Evolution Mechanisms of T91 Steel in Subcritical Conditions and Role of an Internal Oxidation Zone

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Corrosion of a T91 steel tube, used in subcritical conditions in an oil power plant for 157,000 h, was characterized mainly through SEM, TEM, EDX and DRX analyses. Severe oxidation and carburization took place in both the outer (boiler) and inner (steam) wall sides. The nature and morphology of the oxide scale multilayer structure (hematite, magnetite and spinel) depended on the environment exposure. Specific attention was given to the internal oxidation zone at the oxide/metal interface. Diffusion of chromium during the oxidation process was determined and was proposed to be responsible for the continuous advancement of oxidation to the core of material, which eventually gave rise to the spinel. Finally, in the bulk material, coarsening of the secondary carbides (M\(_{23}\)C\(_{6}\)) was the main form of microstructural evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. L. Klueh, Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. International Materials Reviews 50, 287 (2005).

    Article  Google Scholar 

  2. F. Abe, Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700\(^{\circ }\)C and above, Engineering 1, 211 (2015), special Section: Advanced Materials and Materials Genome Members.

  3. J. Li, J. Lu, Y. Dai, M. Dong, W. Zhong and S. Yao, Correlation between aging grade of t91 steel and spectral characteristics of the laser-induced plasma. Applied Surface Science 346, 302 (2015).

    Article  Google Scholar 

  4. A. D. Gianfrancesco, S. T. Vipraio and D. Venditti, Long term microstructural evolution of 9-12% Cr steel grades for steam power generation plants. Procedia Engineering 55, 27 (2013).

    Article  Google Scholar 

  5. L. N. Hierro, V. Rohr, P. Ennis, M. Schutze and W. Quadakkers, Steam oxidation and its potential effects on creep strength of power station materials. Materials and Corrosion 56.

  6. F. Rouillard, G. Moine, M. Tabarant and J. C. Ruiz, Corrosion of 9Cr steel in CO\(_{2}\) at intermediate temperature ii: Mechanism of carburization. Oxidation of Metals 77, 57 (2012).

    Article  Google Scholar 

  7. T. Olszewski, Oxidation Mechanisms of Materials for Heat Exchanging Components in CO\(_{2}\)/H\(_{2}\)0-containing Gases Relevant to Oxy-fuel Environments, Schriften des Forschungszentrums Julich / Reihe Energie & Umwelt: Schriften des Forschungszentrums Julich, (Forschungszentrum Julich, Zentralbibliothek, 2012).

  8. P. Ampornrat, G. S. Was, Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water, Journal of Nuclear Materials 371, 1 (2007), nuclear Fuels and Structural Materials 1Proceedings of the First Symposium on Nuclear Fuels and Structural.

  9. T. Ishitsuka, Y. Inoue and H. Ogawa, Effect of silicon on the steam oxidation resistance of a 9% Cr heat resistant steel. Oxidation of Metals 61, 125 (2004).

    Article  Google Scholar 

  10. D. Sapundjiev, S. V. Dyck and W. Bogaerts, Liquid metal corrosion of T91 and A316L materials in Pb - Bi eutectic at temperatures 400–600\(^{\circ }\)C. Corrosion Science 48, 577 (2006).

    Article  Google Scholar 

  11. X. Zhong, X. Wu and E.-H. Han, The characteristic of oxide scales on T91 tube after long-term service in an ultra-supercritical coal power plant. The Journal of Supercritical Fluids 72, 68 (2012).

    Article  Google Scholar 

  12. A. Bruckman and J. Romanski, On the mechanism of sulphide scale formation on iron. Corrosion Science 5, 185 (1965).

    Article  Google Scholar 

  13. S. Jianian, Z. Longjiang and L. Tiefan, High-temperature oxidation of Fe-Cr alloys in wet oxygen. Oxidation of Metals 48, 347 (1997).

    Article  Google Scholar 

  14. W. J. Quadakkers and J. Zurek, Oxidation in steam and steam/hydrogen environments, Shreirs Corrosion 4th edn. Vol. 1, (Elsevier, Amsterdam, 2010), p. 407.

  15. J. Bischoff and A. T. Motta, Oxidation behavior of ferritic-martensitic and ODS steels in supercritical water. Journal of Nuclear Materials 424, 261 (2012).

    Article  Google Scholar 

  16. Z. Ye, P. Wang, H. Dong, D. Li, Y. Zhang and Y. Li, Oxidation mechanism of T91 steel in liquid lead-bismuth eutectic: with consideration of internal oxidation. Scientific Reports 6, 35268 (2016).

    Article  Google Scholar 

  17. F. Rouillard, G. Moine, L. Martinelli and J. C. Ruiz, Corrosion of 9cr steel in CO\(_{2}\) at intermediate temperature i: Mechanism of void-induced duplex oxide formation. Oxidation of Metals 77, 27 (2012).

    Article  Google Scholar 

  18. R. Viswanathan, J. Sarver and J. M. Tanzosh, Boiler materials for ultra-supercritical coal power plants-steamside oxidation. Journal of Materials Engineering and Performance 15, 255 (2006).

    Article  Google Scholar 

  19. T. Gheno, D. Monceau, J. Zhang and D. J. Young, Carburisation of ferritic Fe-Cr alloys by low carbon activity gases. Corrosion Science 53, 2767 (2011).

    Article  Google Scholar 

  20. C. Panait, W. Bendick, A. Fuchsmann, A.-F. Gourgues-Lorenzon, J. Besson, Study of the microstructure of the Grade 91 steel after more than 100,000 h of creep exposure at 600\(^{\circ }\)C, International Journal of Pressure Vessels and Piping 87, 326 (2010), ECCC Second International Creep Conference.

  21. A. Tonti, D. Lega, A. Antonini, M. Romitelli and A. Alvino, Damage characterization of an ASTM A213 Grade 91 tube after 116.000 h of service in a reforming plant. International Journal of Pressure Vessels and Piping 132–133, 87 (2015).

    Article  Google Scholar 

  22. Z. X. Xia, C. Zhang, X. F. Huang, W. B. Liu and Z. G. Yang, Stress effects in high temperature oxidation of metals. International Materials Reviews 40, 1 (1995).

    Article  Google Scholar 

  23. K. Kimura, K. Sawada, H. Kushima, Y. Toda, Influence of chemical composition and heat treatment on long-term creep strength of Grade 91 steel, Procedia Engineering 55 2 (2013), 6th International Conference on Creep, Fatigue and Creep-Fatigue Interaction.

  24. M. Hamzah, M. Ibrahim, Q. Chye, B. Ahmad, J. Inayat-Hussain and J. Purbolaksono, Evaluation on the hardness and microstructures of T91 reheater tubes after post-weld heat treatment. Engineering Failure Analysis 26, 349 (2012).

    Article  Google Scholar 

  25. X. Tao, C. Li, L. Han and J. Gu, Microstructure evolution and mechanical properties of X12CrMoWVNbN10-1-1 steel during quenching and tempering process. Journal of Materials Research and Technology 5, 45 (2016).

    Article  Google Scholar 

  26. L. Cipolla, S. Caminada, D. Venditti, D. H. Kjartansson, Microstructural evolution of ASTM P91 after 100,000h exposure at 550\(^{\circ }\)C and 600\(^{\circ }\)C, 9th Liege Conference on Materials for Advanced Power Engineering. 2010.

  27. A. Gustafson and M. Hattestrand, Coarsening of precipitates in an advanced creep resistant 9% chromium steel—quantitative microscopy and simulations. Materials Science and Engineering: A 333, 279 (2002).

    Article  Google Scholar 

  28. G. Dimmler, P. Weinert, E. Kozeschnik and H. Cerjak, Quantification of the Laves phase in advanced 9–12% Cr steels using a standard SEM. Materials Characterization 51, 341 (2003).

    Article  Google Scholar 

  29. ASTM A213 / A213M - 06a: Standard Specification for Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes.

  30. C.-Y. Lin and C. Chiu, Emissions of industrial furnaces burning vanadium-contained heavy oils. Journal of Environmental Science & Health Part A A 30, 133 (1995).

    Google Scholar 

  31. R. K. Srivastava, C. A. Miller, C. Erickson and R. Jambhekar, Emissions of sulfur trioxide from coal-fired power plants. Journal of the Air & Waste Management Association 54, 750 (2004).

    Article  Google Scholar 

  32. A. Olmedo, M. Alvarez, G. Dominguez and R. Bordoni, Corrosion behavior of T91 and type AISI 403 stainless steel in supercritical water. Procedia Materials Science 1, 543 (2012).

    Article  Google Scholar 

  33. F. Barbier, G. Benamati, C. Fazio and A. Rusanov, Compatibility tests of steels in flowing liquid lead-bismuth. Journal of Nuclear Materials 295, 149 (2001).

    Article  Google Scholar 

  34. G. Liu, C. Wang, F. Yu and J. Tian, Evolution of oxide film of T91 steel in water vapor atmosphere at 750\(^{\circ }\)C. Oxidation of Metals 81, 383 (2014).

    Article  Google Scholar 

  35. G. B. Gibbs, Model for mild steel oxidation in CO\(_{2}\). Oxidation of Metals 7, 173 (1973).

    Article  Google Scholar 

  36. L. Martinelli, F. Balbaud-Celerier, F. Picard and G. Santarini, High temperature oxidation of Fe-9cr-1Mo steel in liquid metal. Materials Science Forum 595–598, 519 (2008).

    Article  Google Scholar 

  37. L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Bosonnet, G. Picard and G. Santarini, Oxidation mechanism of an Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy at 470\(^{\circ }\)C(part ii). Corrosion Science 50, 2537 (2008).

    Article  Google Scholar 

  38. J. Topfer, S. Aggarwal and R. Dieckmann, Point defects and cation tracer diffusion in (Cr\(_{x}\)Fe\(_{1-x}\)))\(_{3-\delta }\)O\(_{4}\) spinels. Solid State Ionics 81, 251 (1995).

    Article  Google Scholar 

  39. N. D. institute, Design Guidelines for the Selection and Use of Stainless Steels 9014, (1991).

  40. J. Hald, Microstructure and long-term creep properties of 9-12% Cr steels, International Journal of Pressure Vessels and Piping 85, 30 (2008), special Issue: Creep and Fracture in High-Temperature Components-Design and Life Assessment Issues.

  41. F. Abe, Effect of fine precipitation and subsequent coarsening of Fe\(_{2}\)W Laves phase on the creep deformation behavior of tempered martensitic 9Cr-W steels. Metallurgical and Materials Transactions A 36, 321 (2005).

    Article  Google Scholar 

  42. H. Semba, F. Abe, Alloy design and creep strength of advanced 9

  43. K. Sawada, K. Kubo and F. Abe, Creep behavior and stability of MX precipitates at high temperature in 9Cr - 0.5Mo - 1.8W - VNb steel. Materials Science and Engineering: A 319–321, 784 (2001).

    Article  Google Scholar 

  44. J. Zurek, E. Wessel, L. Niewolak, F. Schmitz, T. Kern, L. Singheiser and W. Quadakkers, Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550–650\(^{\circ }\)C. Corrosion Science 46, 2301 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

SEM-FEG and EDX instrumentation was facilitated by the Institut des Matériaux de Paris Centre (IMPC FR2482) and was funded by UPMC, CNRS and by the C’Nano projects of the Région Ile-de-France. The authors are grateful to Pr. Xavier Carrier (Director of IMPC) for his great assistance to achieve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seifallah Fetni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fetni, S., Montero, D., Boubahri, C. et al. Evolution Mechanisms of T91 Steel in Subcritical Conditions and Role of an Internal Oxidation Zone. Oxid Met 90, 291–315 (2018). https://doi.org/10.1007/s11085-018-9837-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-018-9837-6

Keywords

Navigation