Skip to main content
Log in

Formation of abnormal structures and their effects on the ductility of eutectoid steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The formation of abnormal structures and their effects on reduction of area (RA) were investigated in eutectoid steels transformed at different temperatures ranging from 560 °C-650 °C. The occurrence of abnormal structures, such as upper bainite, degenerate pearlite, free ferrite, and grain boundary cementite, was confirmed. The volume fraction of upper bainite and degenerate pearlite decreased on increasing the transformation temperature, while the amount of free ferrite increased. As the transformation temperature increased, RA increased, reached a maximum, and then decreased, while the tensile strength continuously decreased. The crack formations during the tensile test could be classified into three types: tearing, shear cracking, and void formation/ coalescence. The decrease of the ductility at low transformation temperatures was attributed to the increased amount of upper bainite and degenerate pearlite, since the formation of cracks occurred by tearing interfaces or by void formation at abnormal structures during the tensile test. Meanwhile, the decrease in RA at high transformation temperatures was attributed to the occurrence of shear cracking rather than the presence of abnormal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zhang, A. Godfrey, N. Hansen, and X. Huang, Acta Mater. 61, 4898 (2013).

    Article  Google Scholar 

  2. O. P. Modi, N. Deshmukh, D. P. Mondal, A. K. Jha, A. H. Yegneswaran, and H. K. Khaira, Mater. Charact. 46, 347 (2001).

    Article  Google Scholar 

  3. Y. Li, P. Choi, S. Goto, C. Borchers, D. Raabe, and R. Kirchheim, Acta Mater. 60, 4005 (2012).

    Article  Google Scholar 

  4. Y. Li, D. Raabe, M. Herbig, P. Choi, S. Goto, R. Kirchheim, et al., Phy. Rev. Lett., 113, 106104 (2014).

    Article  Google Scholar 

  5. F. P. L. Kavishe and T. J. Baker, Mater. Sci. Tech-Lond. 2, 816 (1986).

    Article  Google Scholar 

  6. B. Garbarz and F. B. Pickering, Mater. Sci. Tech-Lond. 4, 328 (1988).

    Article  Google Scholar 

  7. J. S. Kim, S. Kim, and S. H. Choi, Korean J. Met. Mater. 52, 361 (2014).

    Article  Google Scholar 

  8. S. W. Joung, U. G. Kang, S. P. Hong, Y. W. Kim, and W. J. Nam, Mat. Sci. Eng. A 586, 171 (2013).

    Article  Google Scholar 

  9. J. H. Kim, S. G. Park, S. H. Kim, B. H. Kim, and D. J. Kim, Korean J. Met. Mater. 52, 597 (2014).

    Article  Google Scholar 

  10. H. R. Song, E. G. Kang, C. M. Bae, C. Y. Lee, D. L. Lee, and W. J. Nam, Met. Mater. Int. 12, 239 (2006).

    Article  Google Scholar 

  11. J. J. Lewandowski and A. W. Thompson, Metall. Trans. A 17A, 461 (1986).

    Article  Google Scholar 

  12. J. J. Lewandowski and A. W. Thompson, Metall. Trans. A 17A, 1769 (1986).

    Article  Google Scholar 

  13. Y. J. Park and I. M. Bernstein, Metall. Trans. A 10, 1653 (1979).

    Article  Google Scholar 

  14. K. Nakase K and I. M. Bernstein, Metall. Trans. A 19, 2819 (1988).

    Article  Google Scholar 

  15. D. J. Alexander and I. M. Bernstein, Metall. Trans. A 20, 2821 (1989).

    Article  Google Scholar 

  16. D. A. Porter, K. E. Easterling, and G. D. W. Smith, Acta Metall. Mater. 26, 1405 (1978).

    Article  Google Scholar 

  17. G. Miyamoto, Y. Karube, and T. Furuhara, Acta Mater. 103, 370 (2016).

    Article  Google Scholar 

  18. T. Chairuamgsri and D. V. Edmonds, Acta Mater. 48, 1581 (2000).

    Article  Google Scholar 

  19. H. Rastegari, A. Kermanpur and A. Najafizadeh, Mater. Design 67, 217 (2015).

    Article  Google Scholar 

  20. M.-X. Zhang and P. M. Kelly, Mater. Charact. 60, 545 (2009).

    Article  Google Scholar 

  21. L. E. Miller and G. C. Smith, J. Iron Steel Inst. 208, 998 (1970).

    Google Scholar 

  22. Y. Oki, N. Ibaraki, K. Ochiai, T. Minamida, and K. Makii, Kobe Steel Engineering Reports. 50, 37 (2000).

    Google Scholar 

  23. A. V. Makarov, R. A. Savrai, V. M. Schastlivtsev, T. I. Tabatchikova, and L. Y. Egorova, Phys. Met. Matall. 104, 522 (2007).

    Article  Google Scholar 

  24. M. Calcagnotto, D. Ponge, Y. Adachi, and D. Raabe, Proceedings of the 2nd International Symposium on Steel Science, p. 95, Iron and Steel Institute of Japan, Japan (2009).

    Google Scholar 

  25. X. Sun, K. S. Choi, A. Soulami, W. N. Liu, and M. A. Khaleel, Mat. Sci. Eng. A 526, 140 (2009).

    Article  Google Scholar 

  26. H. Sidhom, H. Yahyaoui, C. Braham, and G. Gonzalez, J. Mater. Eng. Perform. 24, 2586 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Jong Nam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, KS., Jeong, S.W., Bea, H.J. et al. Formation of abnormal structures and their effects on the ductility of eutectoid steel. Met. Mater. Int. 22, 995–1002 (2016). https://doi.org/10.1007/s12540-016-6251-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-6251-y

Keywords

Navigation