Skip to main content
Log in

Structure formation in grade 20 steel during equal-channel angular pressing and subsequent heating

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The structure formation and the mechanical properties of quenched and tempered grade 20 steel after equal-channel angular pressing (ECAP) at various true strains and 400°C are studied. Electron microscopy analysis after ECAP shows a partially submicrocrystalline and partially subgrain structure with a structural element size of 340–375 nm. The structural element size depends on the region in which the elements are formed (polyhedral ferrite, needle-shaped ferrite, tempered martensite, and pearlite). Heating of the steel after ECAP at 400 and 450°C increases the fraction of high-angle boundaries and the structural ferrite element size to 360–450 nm. The fragmentation and spheroidization of cementite lamellae of pearlite and subgrain coalescence in the regions of needle-shaped ferrite and tempered martensite take place at a high ECAP true strain and heating temperature. Structural refinement ensures considerable strengthening, namely, UTS 742–871 MPa at EL 11–15.3%. The strength slightly increases, whereas the plasticity slightly decreases when the true strain increases during ECAP. After ECAP and heating, the strength and plastic properties of the grade 20 steel remain almost the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000).

    Google Scholar 

  2. R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Wiley, New Jersey, 2014).

    Google Scholar 

  3. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformation,” JOM 58 (4), 33–39 (2006).

    Article  Google Scholar 

  4. V. M. Segal, V. I. Reznikov, V. I. Kopylov, et al., Plastic Structure Formation of Metals (Nauka i Tekhnika, Minsk, 1994).

    Google Scholar 

  5. S. V. Dobatkin, R. Z. Valiev, N. A. Krasilnikov, G. I. Raab, and V. N. Konenkova, “Structural inhomogeneity of plain carbon steel during equal channel angular pressing at low temperature,” in Proceedings of 4th International Conference on Recrystallization and Related Phenomena, Ed. by T. Sakai and H. G. Suzuki (Jpn. Inst. Met., Sendai, 1999), Vol. 13, pp. 913–918.

    Google Scholar 

  6. D. H. Shin, W.-J. Kim, and W. Y. Choo, “Grain refinement of a commercial 0.15% C steel by equal-channel angular pressing,” Scr. Mater. 41, 259–262 (1999).

    Article  Google Scholar 

  7. D. H. Shin, B. C. Kim, Y.-S. Kim, and K.-T. Park, “Microstructural evolution in a commercial low carbon steel by equal channel angular pressing,” Acta Mater. 48, 2247–2255 (2000).

    Article  Google Scholar 

  8. S. V. Dobatkin, R. Z. Valiev, N. A. Krasil’nikov, G. I. Raab, and V. N. Konenkova, “Structure and properties of St.3 Steel after hot equal-channel angular pressing,” Met. Sci. Heat Treat. 42 (10), 366–369 (2000).

    Article  Google Scholar 

  9. K.-T. Park and D. H. Shin, “Annealing behavior of submicrometer grained ferrite in low carbon steel fabricated by severe plastic deformation,” Mater. Sci. Eng. A 334, 79–86 (2002).

    Article  Google Scholar 

  10. Y. Fukuda, K. Oh-ishi, Z. Horita, and T. Langdon, “Microstructural evolution in a commercial low carbon steel by equal channel angular pressing,” Acta Mater. 50, 1359–1368 (2002).

    Article  Google Scholar 

  11. J. Wang, C. Xu, Y. Wang, Z. Du, Z. Zhang, L. Wang, X. Zhao, and T. G. Langdon, “Microstructure and properties of a low carbon steel after equal channel angular pressing,” in Nanomaterials by Severe Plastic Deformation, Ed. by M. J. Zehetbauer and R. Z. Valiev (Wiley-VCH, Vienna, 2002) pp. 829–834.

    Google Scholar 

  12. S. V. Dobatkin, P. D. Odesskii, R. Pippan, G. I. Raab, N. A. Krasil’nikov, and A. M. Arsenkin, “Warm and hot ECAP of low-carbon steels,” Russian Metallurgy (Metally), No. 1, 98–107 (2004).

    Google Scholar 

  13. Sh. M. L. Sestri, S. V. Dobatkin, and S. V. Sidorova, “Formation of submicrocrystalline structure in 10G2FT steel at cold equal-channel angular pressing and subsequent heating,” Russian Metallurgy (Metally), No. 2, 113–120 (2004).

    Google Scholar 

  14. J. Zrnik, I. Mamuzic, S. V. Dobatkin, Z. Stejskal, and L. Krau, “Low carbon steel processed by equal channel angular warm pressing,” Metalurgiya (Metallurgy), 46 (1), 21–27 (2007).

    Google Scholar 

  15. S. V. Shagalina, E. G. Koroleva, G. I. Raab, M. V. Bobylev, and S. V. Dobatkin, “Formation of a submicrocrystalline structure in St10 and 08R steels during equal-channel angular pressing,” Russian Metallurgy (Metally), No. 3, 219–224 (2008).

    Article  Google Scholar 

  16. E. G. Astafurova, G. G. Zakharova, E. V. Naydenkin, S. V. Dobatkin, and G. I. Raab, “Influence of equalchannel angular pressing on the structure and mechanical properties of low-carbon steel 10G2FT,” Phys. Met. Metallogr. 110 (3), 261–270 (2010).

    Article  Google Scholar 

  17. J. Zrnik, S. Dobatkin, G. Raab, and L. Kraus, “Ultrafine grained structure formation in low carbon steel processed by SPD,” Mater. Sci. Forum. 654–666 1223–1226 (2010).

    Article  Google Scholar 

  18. G. G. Mayer, E. G. Astafurova, H. J. Maier, E. V. Naydenkin, G. I. Raab, P. D. Odessky, and S. Y. Dobatkin, “Annealing behavior of ultrafine grained structure in low-carbon steel produced by equal channel angular pressing,” Mater. Sci. Eng. A 581, 104–107 (2013).

    Article  Google Scholar 

  19. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, L. S. Davydova, and V. P. Pilyugin, “Strain hardening and the structure of structural steel during shear under pressure,” Fiz. Met. Metalloved. 90 (6), 83–90 (2000).

    Google Scholar 

  20. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, A. M. Patselov, and V. P. Pilyugin, “Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion,” Acta Mater. 55, 6039–6060 (2007).

    Article  Google Scholar 

  21. S. V. Dobatkin, S. V. Shagalina, O. I. Sleptsov, and N. A. Krasil’nikov, “Effect of the initial state of a lowcarbon steel on nanostructure formation during highpressure torsion at high strains and pressures,” Russian Metallurgy (Metally), No. 5, 445–452 (2006).

    Article  Google Scholar 

  22. E. G. Astafurova, S. V. Dobatkin, E. V. Naydenkin, S. V. Shagalina, G. G. Zakharova, and Yu. F. Ivanov, “Structural and phase transformations in nanostructured 0.1% C–Mn–V–Ti steel during cold deformation by high pressure torsion and subsequent annealing,” Nanotechnol. Russ. 4 (1–2), 109–120 (2009).

    Article  Google Scholar 

  23. M. V. Karavaeva, S. K. Nurieva, N. G. Zaripov, A. V. Ganeev, and R. Z. Valiev, “Microstructure and mechanical properties of the steel subjected to severe plastic deformation,” Met. Sci. Heat Treat. 682 (4), 366–369 (2000).

    Google Scholar 

  24. G. G. Maier, E. G. Astafurova, V. S. Koshovkina, E. V. Naidenkin, A. I. Smirnov, V. A. Bataev, A. A. Bataev, P. D. Odesskii, and S. V. Dobatkin, “Formation of ultrafine structures in low-carbon 06MBF steel by cold pressure torsion,” Deformat. Razrush. Mater., No. 6, 19–24 (2014).

    Google Scholar 

  25. Y. Furuya, S. Matsuoka, S. Shimakura, T. Hanamura, and S. Torizuka, “Effect of carbon and phosphorus addition on the fatigue roperties of ultrafine-grained steels,” Scr. Mater. 52, 1163–1167 (2005).

    Article  Google Scholar 

  26. H.-K. Kim, M.-I. Choi, C.-S. Chung, and D. H. Shin, “Fatigue properties of ultrafine grained low carbon steel produced by equal channel angular pressing,” Mater. Sci. Eng. A 340 243–250 (2003).

    Article  Google Scholar 

  27. L. R. Botvina, M. R. Tyutin, V. P. Levin, Y. A. Demina, I. A. Panteleev, and S. V. Dobatkin, “Specific features of static, impact and fatigue fracture of the 0.09% C–0.08% Mo–0.03% Nb–0.06% V steel with ultrafinegrained structure,” Mater. Sci. Forum. 584–586, 281–286 (2008).

    Article  Google Scholar 

  28. L. R. Botvina, V. P. Levin, M. R. Tyutin, N. A. Zharkova, A. V. Morozov, O. N. Ozerskii, and S. V. Dobatkin, “Wear mechanisms of structural steels and the wear effect on the mechanical and acoustic properties during tension,” Trenie Iznos 34 (1), 11–20 (2013).

    Google Scholar 

  29. S. Dobatkin, J. Zrnik, and I. Mamuzic, “Mechanical and service properties of low carbon steels processed by severe plastic deformation,” Metallurgija (Metallurgy) 48 (5), 157–160 (2009).

    Google Scholar 

  30. S. V. Dobatkin, P. D. Odesskii, E. V. Naidenkin, S. V. Shagalina, G. I. Raab, and D. S. Pak, “Mechanical properties of submicron crystalline carbon steels at elevated temperatures,” in Proceedings of XVII St. Petersburg Readings on the Strength Problems (Physical-Technical Institute, St. Petersburg), pp. 117–119.

  31. B. Hadzima, M. Janecek, Y. Estrin, and H. S. Kim, “Microstructure and corrosion properties of ultrafinegrained interstitial free steel,” Mater. Sci. Eng. A 462 243–247 (2007).

    Article  Google Scholar 

  32. S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (Metallurgiya, Moscow, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Dobatkin.

Additional information

Original Russian Text © S.V. Dobatkin, P.D. Odesskii, G.I. Raab, M.R. Tyutin, O.V. Rybalchenko, 2016, published in Metally, 2016, No. 6, pp. 11–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobatkin, S.V., Odesskii, P.D., Raab, G.I. et al. Structure formation in grade 20 steel during equal-channel angular pressing and subsequent heating. Russ. Metall. 2016, 1012–1020 (2016). https://doi.org/10.1134/S0036029516110069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029516110069

Keywords

Navigation