Skip to main content
Log in

The process of crack initiation and effective grain size for cleavage fracture in pearlitic eutectoid steel

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The process of cleavage crack initiation and the character of the effective grain size which controls the fracture toughness of pearlitic eutectoid steel has been investigated using smooth tensile and precracked Charpy impact specimens. The results demonstrated that initial cracking in both specimens was largely the result of shear cracking of pearlite;i.e., localized slip bands in ferrite promoted cracking of the cementite plates, which was then followed by tearing of the adjacent ferrite laths. Such behavior initially results in a fibrous crack. In the tensile specimen, the initiation site was identified as a fibrous region which grew under the applied stress, eventually initiating an unstable cleavage crack. In precracked impact specimens, this critical crack size was much smaller due to the high state of stress near the precrack tip. Fracture mechanics analysis showed that the first one or two dimples formed by the shear cracking process can initiate a cleavage crack. Using thin foil transmission electron microscopy, a cleavage facet was found to be an orientation unit where the ferrites (and the cementites) of contiguous colonies share a common orientation. The size of this orientation unit, which is equal to the cleavage facet size, is controlled by the prior austenite grain size. The influence of austenite grain size on toughness is thus explained by the fact that the austenite grain structure can control the resultant orientation of ferrite and cementite in pearlitic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Rinebolt and W. J. Harris, Jr.:Trans. ASM, 1951, vol. 43, pp. 1175–1214.

    Google Scholar 

  2. K. W. Burns and F. B. Pickering:J. Iron Steel Inst., 1964, vol. 202, pp. 889–906.

    Google Scholar 

  3. W. H. Bruckner:Weld. J., 1950, vol. 29, pp. 467S-76S.

    CAS  Google Scholar 

  4. U. Lindborg:Trans. ASM, 1968, vol. 61, pp. 500–04.

    CAS  Google Scholar 

  5. A. R. Rosenfield, E. Votava, and G. T. Hahn:Trans. ASM, 1968, vol. 61, pp. 807–15.

    Google Scholar 

  6. J. T. Barnby and M. R. Johnson,Met. Sci. J., 1969, vol. 3, pp. 155–59.

    Google Scholar 

  7. L. E. Miller and G. C. Smith:J. Iron. Steel Inst., 1970, vol. 208, pp. 998–1005.

    Google Scholar 

  8. A. R. Rosenfield, G. T. Hahn, and J. D. Embury:Met. Trans., 1972, vol. 3, pp. 2797–04.

    Article  CAS  Google Scholar 

  9. Y. Ohmori and F. Terasaki:Trans. Iron Steel Inst. Jpn, 1976, vol. 16, pp. 561–68.

    CAS  Google Scholar 

  10. A. S. Tetelman and A. J. McEvily, Jr.:Fracture of Structural Materials, pp. 518–20, John Wiley and Sons, NY, 1976.

    Google Scholar 

  11. J. H. Gross and R. D. Stout:Weld. J., 1951, vol. 30, pp. 481S-85S.

    Google Scholar 

  12. J. Fluegge, W. Heller, E. Stolte, and W. Dahl:Arch. Eisenhuettenwes, 1976, vol. 47, pp. 635–40.

    CAS  Google Scholar 

  13. J. M. Hyzak and I. M. Bernstein:Met. Trans. A, 1976, vol. 7A, pp. 1217–24.

    Article  CAS  Google Scholar 

  14. T. Gladman, I. D. McIvor, and F. B. Pickering:J. Iron Steel Inst., 1972, vol. 210, pp. 916–30.

    CAS  Google Scholar 

  15. A. M. Turkalo:Trans. TMS-AIME, 1960, vol. 218, pp. 24–30.

    CAS  Google Scholar 

  16. Y. J. Park and I. M. Bernstein: ASTM STP, 644 pp. 287–02, 1978.

    Google Scholar 

  17. J. R. Low, Jr.:Progr. Mater. Sci., 1963, vol. 12, pp. 1–96.

    Google Scholar 

  18. R. H. Geiss:Appl. Phys. Lett., 1975, vol. 27, pp. 174–76.

    Article  CAS  Google Scholar 

  19. Y. J. Park and I. M. Bernstein:Proceedings of Fourth International Conference on Francture, D. M. R. Taplin, ed., vol. 2, pp. 33–40, University of Waterloo Press, Waterloo, 1977.

    Google Scholar 

  20. G. E. Dieter:Mechanical Metallurgy, Second ed. p. 165, McGraw-Hill Book Co., NY, 1976.

    Google Scholar 

  21. H. Ohtani and F. Terasaki:Tetsu-to-Hagane, 1972, vol. 58, pp. 67–80.

    Google Scholar 

  22. J. D. G. Groom and J. F. Knott:Met. Sci., 1975, vol. 9, pp. 390–400.

    Article  Google Scholar 

  23. A. P. Green and B. B. Hundy:J. Mech. Phys. Solids, 1956, vol. 4, pp. 128–44.

    Article  Google Scholar 

  24. J. F. Knott:Proceedings of the Fourth International Conference on Fracture, D. M. R. Taplin, ed., vol. 1, pp. 61–92, University of Waterloo Press, Waterloo, 1977.

    Google Scholar 

  25. T. R. Wilsaw, C. A. Rau, and A. S. Tetelman:Eng. Fract. Mech., 1968, vol. 1, pp. 191–211.

    Article  Google Scholar 

  26. R. O. Ritchie, J. F. Knott, and J. R. Rice:J. Mech. Phys. Solids, 1973, vol. 21, pp. 395–410.

    Article  CAS  Google Scholar 

  27. J. R. Rice and M. A. Johnson:Inelastic Behavior of Solids, M. F. Kanninenet al., ed., pp. 641–72, McGraw-Hill Book Co., NY, 1970.

    Google Scholar 

  28. W. J. McGregor Tegart:Elements of Mechanical Metallurgy, pp. 1–44, Macmillan Co., New York, 1966.

    Google Scholar 

  29. J. R. Griffiths and D. R. J. Owen:J. Mech. Phys. Solids, 1971, vol. 19, pp. 419–31.

    Article  Google Scholar 

  30. E. OrowanRep. Progr. Phys., 1948, vol. 12, pp. 185–232.

    Article  Google Scholar 

  31. J. F. KnottJ. Iron Steel Inst., 1966, vol. 204, pp. 104–11.

    CAS  Google Scholar 

  32. G. Oates:J. Iron Steel Inst., 1968, vol. 206, pp. 930–35.

    CAS  Google Scholar 

  33. W. W. Webb and W. D. Forgeng:Acta Met., 1958, vol. 6, pp. 462–69.

    Article  CAS  Google Scholar 

  34. K. Maurer and D. H. Warrington:Phil. Mag., 1967, vol. 15, pp. 321–27.

    Article  CAS  Google Scholar 

  35. J. Gil Sevillano:Mater. Sci. Eng., 1975, vol. 21, pp. 221–25.

    Article  CAS  Google Scholar 

  36. A. Inoue, T. Ogura, and T. Masumoto:Trans. Jpn. Inst. Met., 1976, vol. 17, pp. 149–57.

    Google Scholar 

  37. R. F. Mehl and D. W. Smith:Trans. AIME, 1935, vol. 116, pp. 330–41.

    CAS  Google Scholar 

  38. G. V. Smith and R. F. Mehl:Trans. AIME, 1942, vol. 150, pp. 211–26.

    Google Scholar 

  39. C. S. Smith:Trans. ASM, 1953, vol. 45, pp. 533–75.

    CAS  Google Scholar 

  40. M. Hillert:Decomposition of Austenite by Diffusional Processes, V. F. Zackay and H. I. Aaronson, eds., pp. 197–247, Interscience Co., NY, 1962.

    Google Scholar 

  41. F. C. Hull and R. F. Mehl:Trans. ASM, 1942, vol. 30, pp. 381–24.

    CAS  Google Scholar 

  42. G. W. Rathenau and G. Baas:Acta Met., 1954, vol. 2, pp. 875–83.

    Article  CAS  Google Scholar 

  43. R. J. Dippenaar and R. W. K. Honeycombe:Proc. Roy. Soc. London, 1973, vol. A333, pp. 455–67.

    Article  CAS  Google Scholar 

  44. K. W. Andrews:Acta Met., 1963, vol. 11, pp. 939–46.

    Article  CAS  Google Scholar 

  45. G. Kurjumov and G. Sachs:Z. Phys., 1930, vol. 64, p. 325.

    Article  Google Scholar 

  46. A. Inoue, T. Ogura, and T. Masumoto:Trans. Jpn. Inst. Met., 1976, vol. 17, pp. 663–72.

    CAS  Google Scholar 

  47. W. L. Server, D. R. Ireland, and R. A. Wullaert: Dynatup Report TR74-29R, Effects Technology, Santa Barbara, CA, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Y.J. PARK, formerly with Carnegie-Mellon University, Pittsburgh, PA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y.J., Bernstein, I.M. The process of crack initiation and effective grain size for cleavage fracture in pearlitic eutectoid steel. Metall Trans A 10, 1653–1664 (1979). https://doi.org/10.1007/BF02811698

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02811698

Keywords

Navigation