Skip to main content

Advertisement

Log in

Hydrogeochemical characteristics of meltwater draining from Himalayan glaciers: a critical review

  • Review Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Hydrogeochemistry of glacial meltwater provides important information about the solute acquisition processes, chemical weathering and associated CO2 consumption, atmospheric and anthropogenic activities, solute dynamics and impact of climate on meltwater chemistry in the glacier environment. This review paper mainly discusses about the hydrogeochemistry of meltwater draining from approximately 25 glaciers situated in the different regions of Himalaya. HCO3 is the major anion in all the studied glaciers except Batal, Dokriani, Chaturangi, Dudu, Bagni, Raktvarn and Gangotri glaciers where SO42− is found to be the dominant anion, indicating possible predominance of sulphuric acid–mediated weathering in these glaciers. Carbonate weathering has been observed as a main solute acquisition process controlling hydrogeochemistry of the Himalayan glaciers meltwater. The pCO2 (effective CO2 pressure) values for the Western and Central Himalayan glaciers meltwater were higher than that of atmospheric (10–3.5 atm.) pCO2 value, representing disequilibrium glacial system with respect to the atmospheric environment. Ca-HCO3 has been identified as a dominant water type in majority of the studied Himalayan glaciers except Chaturangi, Dokriani, Batal, Raktvarn and Gangotri glaciers where Ca-SO4 has been identified as the major water type. In general, major ion concentration in the glaciers meltwater located in the Garhwal and Himachal Himalayan regions is low during the peak flow or monsoon period and high during the late melt or post-monsoon season. The chemical weathering rates of Chhota Shigri (Western Himalayan) glacier is lesser as compared to the Dokriani (Garhwal Himalayan) glacier, which might be due to the availability of high supraglacial moraines and intense rainfall during monsoon season in the basin of Dokriani glacier. The annual CO2 drawdown by the high-altitude basin of Batal glacier due to CO2 consumption rate through chemical (carbonate and silicate) weathering is very low as compared to the Gangotri (Garhwal Himalayan) glacier, which might be due to lesser glacial runoff and smaller size of the Batal glacier with respect to the Gangotri glacier. Climate has significantly affected the solute chemistry of Himalayan glaciers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal A, Tayal S (2013) Assessment of volume change in East Rathong glacier. Eastern Himalaya Int J Geoinform 9(1):73–82

    Google Scholar 

  • Ahmad S, Hasnain SI (2000) Meltwater characteristics of Garhwal Himalayan glaciers. J Geol Soc India 56:431–439

    Google Scholar 

  • Ahmad S, Hasnain SI (2001) Chemical characteristics of stream draining from Dudu glacier: an Alpine meltwater stream in Ganga Headwater. Garhwal Himalaya J China Univ Geosci 12(1):75–83

    Google Scholar 

  • Ahmad S, Ansari Z (2020) Characteristics of rock–water interaction in Gangotri proglacier meltwater streams at higher altitude catchment Garhwal Himalaya, Uttarakhand India. J Earth Syst Sci 129:173. https://doi.org/10.1007/s12040-020-01426-9

  • Amiotte-Suchet P, Probst JL, Ludwig W (2003) Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochem Cy 17(2):1038. https://doi.org/10.1029/2002GB001891

    Article  Google Scholar 

  • Angchuk T, Ramanathan A, Bahuguna IM, Mandal A, Soheb M, Singh VB, Mishra S, Vatsal S (2021) Annual and seasonal glaciological mass balance of Patsio glacier, western Himalaya (India) from 2010 to 2017. J Glaciol 67(266):1137–1146. https://doi.org/10.1017/jog.2021.60

    Article  Google Scholar 

  • APHA (1985) Standard methods for examination of water and wastewater, 16th edn. American Public Health Association, Washington, DC, p 1268

    Google Scholar 

  • APHA (2005) Standard methods for examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC

    Google Scholar 

  • APHA (1998) Standard methods for examination of water and wastewater, 20th edn. APHA, AWWA, WPCF, Washington, DC

  • Bastia F, Equeenuddin SK (2019) Chemical weathering and associated CO2 consumption in the Mahanadi river basin, India. J Asian Earth Sci 174:218–231. https://doi.org/10.1016/j.jseaes.2018.12.010

    Article  Google Scholar 

  • Bhambri R, Bolch T (2009) Glacier Mapping : A Review with Special Reference to the Indian Himalayas. Prog Phys Geog 33(5):672–704. https://doi.org/10.1177/0309133309348112

    Article  Google Scholar 

  • Bhatt MP, Masuzawa T, Yamamoto M, Sakai A, Fujita K (2000) Seasonal changes in dissolved chemical composition and flux of meltwater draining from Lirung Glacier in the Nepal Himalayas. Proceedings of an International Workshop on Debris-covered Glaciers, University of Washington, Seattle, Washington, USA, pp 277–288

  • Bhutiyani MR, Kale VS, Pawar NJ (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the northwestern Himalaya during the twentieth century. Clim Change 85:159–177. https://doi.org/10.1007/s10584-006-9196-1

    Article  Google Scholar 

  • Bisht H, Sah S, Kumar K, Arya PC, Tewari M (2017) Quantification of variability in discharge and suspended sediment concentration of meltwater of Gangotri Glacier, Garhwal Himalaya. ENVIS Bull Himal Ecol 25:10–16

    Google Scholar 

  • Bisht H, Arya PC, Kumar K (2018) Hydro-chemical analysis and ionic flux of meltwater runoff from Khangri Glacier, West Kameng, Arunachal Himalaya. India Environ Earth Sci 77:598. https://doi.org/10.1007/s12665-018-7779-6

    Article  Google Scholar 

  • Bisht H, Kotlia BS, Kumar K, Taloor AK, Arya PC, Sah SK, Agnihotri V, Tewari M, Upadhyay R (2022) Hydrogeochemical analysis and identification of solute sources in the meltwater of Chaturangi glacier, Garhwal Himalaya. India Appl Water Sci 12:29. https://doi.org/10.1007/s13201-021-01510-5

    Article  Google Scholar 

  • Bisht H, Kotlia BS, Kumar K, Taloor AK, Chand P, Bisht JS, Maithani Y, Kukreti M, Tewari M (2021) Sources of solute and hydrochemical analysis of Gangotri Glacier Meltwater. In: Taloor AK et al (eds) Water, cryosphere, and climate change in the Himalayas. Springer Nature, Switzerland, pp 259–278. https://doi.org/10.1007/978-3-030-67932-3_16

  • Bolch T, Buchroithner MF, Peters J, Baessler M, Bajracharya S (2008) Identification of glacier motion and potentially dangerous glacial lakes in the Mt Everest region/Nepal Using Spaceborne Imagery. Nat Hazards Earth Syst Sci 8(6):1329–1340. https://doi.org/10.5194/nhess-8-1329-2008

    Article  Google Scholar 

  • Brown GH (2002) Glacier meltwater hydrochemistry. Appl Geochem 17:855–883. https://doi.org/10.1016/S0883-2927(01)00123-8

    Article  Google Scholar 

  • Brown GH, Tranter M, Sharp M (1996) Subglacial chemical erosion-seasonal variations in solute provenance, Haut Glacier d’Arolla, Switzerland. Ann Glaciol 22:25–31. https://doi.org/10.3189/1996AoG22-1-25-31

    Article  Google Scholar 

  • Chand P, Sharma MC (2015) Frontal changes in the Manimahesh and Tal Glaciers in the Ravi basin, Himachal Pradesh, north-western Himalaya (India), between 1971 and 2013. Int J Remote Sens 36(16):4095–4113. https://doi.org/10.1080/01431161.2015.1074300

    Article  Google Scholar 

  • Chand P, Sharma MC, Bhambri R, Sangewar CV, Juyal N (2017) Reconstructing the pattern of the Bara Shigri Glacier Fluctuation since the end of the Little Ice Age, Chandra Valley. North-Western Himalaya Prog Phys Geog 5:643–675. https://doi.org/10.1177/0309133317728017

    Article  Google Scholar 

  • Dobhal DP, Gergan JT, Thayyen RJ (2008) Mass balance studies of the Dokriani Glacier from 1992 to 2000, Garhwal Himalaya, India. Bull Glaciol Res 25:9–17

    Google Scholar 

  • Dudeja D, Bartarya SK, Biyani AK (2011) Hydrochemical and water quality assessment of ground water in Doon Valley of Outer Himalaya, Uttarakhand, India. Environ Monit Assess 181:183–204. https://doi.org/10.1007/s10661-010-1823-7

    Article  Google Scholar 

  • Feistel R, Hellmuth O (2021) Relative humidity: a control valve of the steam engine climate. J Human Earth Future 2(2):140–182. https://doi.org/10.28991/HEF-2021-02-02-06

    Article  Google Scholar 

  • Florence TM, Farrar YJ (1971) Spectrophotometric determination of chloride at the parts-per-billion level by the mercury(II) thiocyanate method. Anal Chim Acta 54:373–377. https://doi.org/10.1016/S0003-2670(01)82142-5

    Article  Google Scholar 

  • Gaillardet J, Dupre B, Louvat P, Allegre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30. https://doi.org/10.1016/S0009-2541(99)00031-5

    Article  Google Scholar 

  • Garrels RM, Fred TM (1972) A quantitative model for the sedimentary rock cycle. Mar Chem 1(1):27–41. https://doi.org/10.1016/0304-4203(72)90004-7

    Article  Google Scholar 

  • GSI (Geological Survey of India) (1999) Inventory of the Himalayan glaciers- a contribution to the International Hydrological Program. In: Kaul MK (ed) Special Publication Number 34

  • Han H, Liu S, Wang J, Wang Q, Xie C (2010) Glacial runoff characteristics of the Koxkar Glacier, Tuomuer-Khan Tengri Mountain Ranges, China. Environ Earth Sci 61:665–674. https://doi.org/10.1007/s12665-009-0378-9

    Article  Google Scholar 

  • Hartmann J, Jansen N, Dürr HH, Kempe S, Köhler P (2009) Global CO2 consumption by chemical weathering: What is the contribution of highly active weathering regions? Global Planet Change 69(4):185–194. https://doi.org/10.1016/j.gloplacha.2009.07.007

    Article  Google Scholar 

  • Hasnain SI, Thayyen RJ (1999) Controls of major-ion chemistry of the Dokriani glacier meltwaters, Ganga basin. Garhwal Himalaya J Glaciol 45(149):87–92. https://doi.org/10.3189/S0022143000003063

    Article  Google Scholar 

  • Hasnain SI, Subramanian V, Dhanpal K (1989) Chemical characteristics and suspended sediment load of meltwaters from a Himalayan Glacier in India. J Hydrol 106:99–108. https://doi.org/10.1016/0022-1694(89)90168-6

    Article  Google Scholar 

  • Hren MT, Chamberlain CP, Hilley GE, Blisniuk PM, Bookhagen B (2007) Major ion chemistry of the Yarlung Tsangpo-Brahmaputra river: chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya. Geochim Cosmochim Acta 71:2907–2935. https://doi.org/10.1016/j.gca.2007.03.021

    Article  Google Scholar 

  • ICIMOD (2001) Inventory of glaciers, glacial lakes and glacial lake outburst floods, monitoring and early warning system in the Hindu Kush-Himalayan region, Nepal. UNEP/RC-AP/ICIMOD, Kathmandu

  • Immserzeel WW, van Beeke LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328:1382–1385. https://doi.org/10.1126/science.1183188

    Article  Google Scholar 

  • IPCC (2007) Summary for Policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (ed) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA

  • Javadinejad S, Dara R, Jafary F (2020) Climate change scenarios and effects on snow-melt runoff. Civil Eng J 6(9):1715–1725. https://doi.org/10.28991/cej-2020-03091577

    Article  Google Scholar 

  • Khadka UR, Ramanathan AL (2013) Major ion composition and seasonal variation in the Lesser Himalayan lake: case of Begnas Lake of Pokhara Valley. Nepal Arab J Geosci 6:4191–4206. https://doi.org/10.1007/s12517-012-0677-4

    Article  Google Scholar 

  • Khan AA, Pant NC, Ravindra R (2018) Current status of Himalayan cryosphere and adjacent mountains. In: Goel PS, Ravindra R, Chattopadhyay S (eds) Science and Geopolitics of The White World. Springer International Publishing, Switzerland, pp 161–182

    Chapter  Google Scholar 

  • Krishnaswami S, Singh SK (2005) Chemical weathering in the river basins of the Himalaya. India Curr Sci 89(5):841–849

    Google Scholar 

  • Kumar K, Miral MS, Joshi S, Pant N, Joshi V, Joshi LM (2009) Solute dynamics of meltwater of Gangotri glacier, Garhwal Himalaya, India. Environ Geol 58:1151–1159. https://doi.org/10.1007/s00254-008-1592-6

    Article  Google Scholar 

  • Kumar R, Singh S, Randhawa SS, Singh KK, Rana JC (2014) Temperature trend analysis in the glacier region of Naradu Valley, Himachal Himalaya, India. C R Geoscience 346:213–222. https://doi.org/10.1016/j.crte.2014.09.001

    Article  Google Scholar 

  • Kumar A, Gupta AK, Bhambri R, Verma A, Tiwari SK, Asthana AKL (2018) Assessment and review of hydrometeorological aspects for cloudburst and flash flood events in the third pole region (Indian Himalaya). Polar Sci 18:5–20. https://doi.org/10.1016/j.polar.2018.08.004

    Article  Google Scholar 

  • Kumar R, Kumar R, Singh A, Singh S, Bhardwaj A, Kumari A, Sinha RK, Gupta A (2019a) Hydro-geochemical analysis of meltwater draining from Bilare Banga glacier, Western Himalaya. Acta Geophys 67:651–660. https://doi.org/10.1007/s11600-019-00262-w

  • Kumar N, Ramanathan AL, Tranter M, Sharma P, Pandey M, Ranjan P, Raju NJ (2019b) Switch in chemical weathering caused by the mass balance variability in a Himalayan glacierized basin: a case of Chhota Shigri Glacier. Hydro Sci J 64(2):179–189. https://doi.org/10.1080/02626667.2019.1572152

  • Kumar R, Kumar R, Singh S, Singh A, Bhardwaj A, Chaudhary H (2019c) Hydro-geochemical characteristics of glacial meltwater from Naradu glacier catchment. Western Himalaya Environ Earth Sci 78:683. https://doi.org/10.1007/s12665-019-8687-0

  • Li S, Lu XX, Bush RT (2014) Chemical weathering and CO2 consumption in the Lower Mekong River. Sci Total Environ 472:162–177. https://doi.org/10.1016/j.scitotenv.2013.11.027

    Article  Google Scholar 

  • Li L, Shen M, Hou Y, Xu C, Lutz AF, Chen J, Jain SK, Li J, Chen H (2019) Twenty-first-century glacio-hydrological changes in the Himalayan headwater Beas River basin. Hydrol Earth Syst Sci 23:1483–1503. https://doi.org/10.5194/hess-23-1483-2019

    Article  Google Scholar 

  • Li X, Wang N, Ding Y, Hawkings JR, Yde JC, Raiswell R, Liu Z, Zhang S, Kang S, Wang R, Liu Q, Liu S, Bol R, You X, Li G (2022) Globally elevated chemical weathering rates beneath glaciers. Nat Commun 13:407. https://doi.org/10.1038/s41467-022-28032-1

    Article  Google Scholar 

  • Liu W, Ren J, Qin X, Liu J, Liu Q, Cui X (2010) Hydrological characteristics of the Rongbuk Glacier catchment in Mt. Qomolangma region in the Central Himalayas. China J Mt Sci 7:146–156. https://doi.org/10.1007/s11629-010-1069-4

    Article  Google Scholar 

  • Lone A, Jeelani G, Deshpande RD, Kang S, Huang J (2019) Hydrochemical assessment (major ions and Hg) of meltwater in high altitude glacierized Himalayan catchment. Environ Monit Assess 191:213. https://doi.org/10.1007/s10661-019-7338-y

    Article  Google Scholar 

  • Maurya AS, Rai SP, Joshi N, Dutt KS, Rai N (2018) Snowmelt runoff and groundwater discharge in Himalayan rivers: a case study of the Satluj River. NW India Environ Earth Sci 77:694. https://doi.org/10.1007/s12665-018-7849-9

    Article  Google Scholar 

  • Mccarthy M, Pritchard H, Wills I, King E (2017) Ground-penetrating radar measurements of debris thickness on Lirung Glacier. Nepal J Glaciol 63(239):543–555. https://doi.org/10.1017/jog.2017.18

    Article  Google Scholar 

  • Meybeck M (1986) Compositiondes ruisseau non pollues de France. Sci Géol Bull 39:3–77

    Google Scholar 

  • Mitchell AC, Brown GH (2007) Diurnal hydrological-physicochemical controls and sampling methods for minor and trace elements in an Alpine glacial hydrological system. J Hydrol 332(1–2):123–143. https://doi.org/10.1016/j.jhydrol.2006.06.026

    Article  Google Scholar 

  • Moquet JS, Crave A, Viers J, Seyler P, Armijos E, Bourrel L, Chavarri E, Lagane C, Laraque A, Casimiro WSL, Pombosa R, Noriega L, Vera A, Guyot JL (2011) Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon basins. Chem Geol 287:1–26. https://doi.org/10.1016/j.chemgeo.2011.01.005

    Article  Google Scholar 

  • Naithani AK, Nainwal HC, Sati KK, Prasad C (2001) Geomorphological evidences of retreating of Gangotri glacier and its characteristics. Curr Sci 80(1):87–94

    Google Scholar 

  • Negrel P, Allegre CJ, Dupre B, Lewin E (1993) Erosion sources determined by determined by inversion of major and trace element ratios in river water: the Congo basin case. Earth Planet Sci Lett 120:59–76. https://doi.org/10.1016/0012-821X(93)90023-3

    Article  Google Scholar 

  • Pandey SK, Singh AK, Hasnain SI (1999) Weathering and geochemical processes controlling solute acquisition in Ganga Headwater-Bhagirathi River, Garhwal Himalaya. India Aquat Geochem 5(4):357–379. https://doi.org/10.1023/A:1009698016548

    Article  Google Scholar 

  • Pandey SK, Singh AK, Hasnain SI (2002) Grain-size distribution, morphoscopy and elemental chemistry of suspended sediments of Pindari glacier, Kumaon Himalaya. India Hydro Sci J 47(2):213–226. https://doi.org/10.1080/02626660209492925

    Article  Google Scholar 

  • Pandey SK (1999) Aspect of weathering processes and chemical characteristics of Pindari glacier meltwater, Kamaon Himalaya, India. Ph.D Thesis, Jawaharlal Nehru University, New Delhi

  • Pant RR, Zhang F, Rehman FU, Wang G, Ye M, Zeng C, Tang H (2018) Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal. Sci Total Environ 622:770–782. https://doi.org/10.1016/j.scitotenv.2017.12.063

    Article  Google Scholar 

  • Philip G, Sah MP (2004) Mapping repeated surges and retread of glaciers using IRS-1C/1D data: a case study of Shaune Garang glacier, northwestern Himalaya. Int J Appl Earth Obs 6(2):127–141. https://doi.org/10.1016/j.jag.2004.09.002

    Article  Google Scholar 

  • Pottakkal JG, Ramanathan AL, Singh VB, Sharma P, Azam MF, Linda A (2014) Characterization of subglacial pathways draining two tributary meltwater streams through the lower ablation zone of Gangotri Glacier, Garhwal Himalaya. India Curr Sci 107(4):613–621

    Google Scholar 

  • Pratap K (1992) Hydrochemistry of meltwaters draining from Bhagnyu glacier, Alaknanda valley, Garhwal Himalayas, Uttar Pradesh. M.Phil Dissertation, Jawaharlal Nehru University, New Delhi

  • Priya N, Thayyen RJ, Ramanathan AL, Singh VB (2016) Hydrochemistry and dissolved solute load of meltwater in a catchment of cold-arid trans-Himalayan region of Ladakh over an entire melting period. Hydrol Res 47(6):1224–1238. https://doi.org/10.2166/nh.2016.156

    Article  Google Scholar 

  • Qaisar FUR, Zhang F, Pant RR, Wang G, Khan S, Zeng C (2018) Spatial variation, source identification, and quality assessment of surface water geochemical composition in the Indus River Basin, Pakistan. Environ Sci Pollut Res 25:12749–12763. https://doi.org/10.1007/s11356-018-1519-z

    Article  Google Scholar 

  • Rai SC, Gurung A (2005) Raising awareness of the impacts of climate changes. Mt Res Dev 25(4):316–320. https://doi.org/10.1659/0276-4741(2005)025[0316:RAOTIO]2.0.CO;2

    Article  Google Scholar 

  • Raina VK, Srivastava D (2008) Glacier atlas of India. Geological Society of India, Bangalore

    Google Scholar 

  • Raiswell R (1984) Chemical models of solute acquisition in glacial meltwaters. J Glaciol 30(104):49–57. https://doi.org/10.3189/S0022143000008480

    Article  Google Scholar 

  • Ramanathan AL (2010) Study of deglaciation and associated consequences in the Gangotri Glacier: dye tracer and hydrochemical approach. Project report submitted to Department of Science and Technology, Government of India, p.53

  • Reynolds RC, Johnson NM (1972) Chemical weathering in the temperate glacial environment of the Northern Cascade Mountains. Geochim Cosmochim Acta 36:537–554. https://doi.org/10.1016/0016-7037(72)90074-9

    Article  Google Scholar 

  • Rogora M, Mosello R, Arisci S (2003) The effect of climate warming on the hydrochemistry of Alpine lakes. Water Air Soil Pollut 148:347–361. https://doi.org/10.1023/A:1025489215491

    Article  Google Scholar 

  • Sampson AP, Weli VE, Nwagbara MO, Eludoyin OS (2021) Sensations of air temperature variability and mitigation strategies in urban environments. J Human Earth Future 2(2):100–113. https://doi.org/10.28991/HEF-2021-02-02-02

    Article  Google Scholar 

  • Schauwecker S, Rohrer M, Huggel C, Kulkarni A, Ramanathan AL, Salzmann N, Stoffel M, Brock B (2015) Remotely sensed debris thickness mapping of Bara Shigri Glacier. Indian Himalaya J Glaciol 66(228):675–688. https://doi.org/10.3189/2015JoG14J102

    Article  Google Scholar 

  • Shanker R, Srivastava D (2001) Glaciated regime environmental interaction and Himalayan ecosystem. Proceedings on Snow Ice, Geological Survey of India, Lucknow, pp 17–21

  • Sharma SS, Ganju A (2000) Complexities of avalanche forecasting in Western Himalaya—an overview. Cold Reg Sci Technol 31(2):95–102. https://doi.org/10.1016/S0165-232X(99)00034-8

    Article  Google Scholar 

  • Sharma SK, Subramanian V (2008) Hydrochemistry of the Narmada and Tapti Rivers, India. Hydrol Proc 22:3444–3455. https://doi.org/10.1002/hyp.6929

    Article  Google Scholar 

  • Sharma MK, ThayyenShyamlal RJ (2020) Role of sediment in solute acquisition in the Himalayan glacier meltwater stream, Gangotri glacier, Uttarakhand India. Hydrol Process 35:e14018. https://doi.org/10.1002/hyp.14018

    Article  Google Scholar 

  • Sharma A, Singh AK, Kumar K (2012) Environmental geochemistry and quality assessment of surface and subsurface water of Mahi River basin, western India. Environ Earth Sci 65:1231–1250. https://doi.org/10.1007/s12665-011-1371-7

    Article  Google Scholar 

  • Sharma P, Ramanathan AL, Pottakkal JG (2013) Study of solute sources and evolution of hydrogeochemical processes of the Chhota Shigri Glacier meltwaters, Himachal Pradesh. India Hydro Sci J 58(5):1128–1143. https://doi.org/10.1080/02626667.2013.802092

    Article  Google Scholar 

  • Sharma P, Patel LK, Ravindra R, Singh A, Mahalinganathan K, Thamban M (2016) Role of debris cover to control specific ablation of adjoining Batal and Sutri Dhaka glaciers in Chandra Basin (Himachal Pradesh) during peak ablation season. J Earth Syst Sci 125(3):459–473. https://doi.org/10.1007/s12040-016-0681-2

    Article  Google Scholar 

  • Sharma MK, Thayyen RJ, Jain CK, Arora M, Lal S (2019) Assessment of system characteristics of Gangotri glacier headwater stream. Sci Total Environ 662:842–851. https://doi.org/10.1016/j.scitotenv.2019.01.229

    Article  Google Scholar 

  • Sharma BM, Tayal S, Chakraborthy P, Bharat GK (2015) Chemical characterization of meltwater from East Rathong Glacier Vis-à-Vis Western Himalayan Glaciers. In: Joshi R, Kumar K, Pani LKS (ed) Dynamics of Climate Change and Water Resources of Northwestern Himalaya. Springer International Publishing, Switzerland, pp181–190. https://doi.org/10.1007/978-3-319-13743-8_14

  • Sharp MJ (1991) Hydrological inferences from meltwater quality data: the unfulfilled potential. Proceeding of the BHS 3rd National Hydrological Symposium, Southhampton

  • Shukla T, Sundriyal S, Stachnik L, Mehta M (2018) Carbonate and silicate weathering in glacial environments and its relation to atmospheric CO2 cycling in the Himalaya. Ann Glaciol 59(77):159–170. https://doi.org/10.1017/aog.2019.5

    Article  Google Scholar 

  • Shukla T, Sundriyal S, Sen IS (2020) Contemporary inorganic carbon fluxes from rapidly changing glacierized watersheds of the Himalaya. J Hydrol 587:124972. https://doi.org/10.1016/j.jhydrol.2020.124972

    Article  Google Scholar 

  • Singh AK, Hasnain SI (1998) Major ion chemistry and weathering control in a high altitude basin: Alaknanda river, Garhwal Himalaya, India. Hydro Sci J 43(6):825–843. https://doi.org/10.1080/02626669809492181

    Article  Google Scholar 

  • Singh AK, Hasnain SI (2002) Aspects of weathering and solute acquisition processes controlling chemistry of sub-Alpine proglacial streams of Garhwal Himalaya, India. Hydrol Proc 16:835–849. https://doi.org/10.1002/hyp.367

    Article  Google Scholar 

  • Singh VB, Ramanathan AL (2015) Assessment of solute and suspended sediment acquisition processes in the Bara Shigri glacier meltwater (Western Himalaya, India). Environ Earth Sci 74:2009–2018. https://doi.org/10.1007/s12665-015-4584-3

    Article  Google Scholar 

  • Singh VB, Ramanathan AL (2017a) Hydrogeochemistry of the Chhota Shigri glacier meltwater, Chandra basin, Himachal Pradesh, India: solute acquisition processes, dissolved load and chemical weathering rates. Environ Earth Sci 76:223. https://doi.org/10.1007/s12665-017-6465-4

  • Singh VB, Ramanathan AL (2017b) Characterization of hydro-geochemical processes controlling major ion chemistry of the Batal glacier meltwater, Chandra basin, Himachal Pradesh, India. Proc Natl Acad Sci India Sect A Phys Sci 87(1):145–153. https://doi.org/10.1007/s40010-016-0294-9

  • Singh AK, Pandey SK, Panda S (1998) Dissolved and sediment load characteristics of Kafni glacier meltwater, Pindar valley, Kumaon Himalaya. J Geol Soc India 52:305–312

    Google Scholar 

  • Singh P, Haritashya UK, Ramasastri KS, Kumar N (2005) Diurnal variations in discharge and suspended sediment concentration, including runoff-delaying characteristics of the Gangotri glacier in the Garhwal Himalayas. Hydrol Proc 19:1445–1457. https://doi.org/10.1002/hyp.5583

    Article  Google Scholar 

  • Singh P, Haritashya UK, Kumar N, Singh Y (2006) Hydrological characteristics of the Gangotri Glacier, central Himalayas, India. J Hydrol 327:55–67. https://doi.org/10.1016/j.jhydrol.2005.11.060

    Article  Google Scholar 

  • Singh VB, Ramanathan AL, Pottakkal JG, Sharma P, Linda A, Azam MF, Chatterjee C (2012) Chemical characterisation of meltwater draining from Gangotri Glacier, Garhwal Himalaya. India J Earth Syst Sci 121(3):625–636. https://doi.org/10.1007/s12040-012-0177-7

    Article  Google Scholar 

  • Singh VB, Ramanathan AL, Pottakkal JG, Linda A, Sharma P (2013a) Temporal variation in the major ion chemistry of Chhota Shigri glacier meltwater, Lahaul-Spiti Valley, Himachal Pradesh India. Natl Acad Sci Lett 36(3):335–342. https://doi.org/10.1007/s40009-013-0135-1

  • Singh VB, Ramanathan AL, Pottakkal JG, Sharma P, Linda A, Chatterjee C, Angchuk T, Mandal A (2013b) Hydrochemistry of melt water emerging from Raktvarn glacier, central Himalaya, India. In: Sundaresan J, Gupta P, Santosh KM, Boojh R (eds) Climate Change & Himalayan Ecosystem-indicator, Bio & Water resources. Scientific Publishers, India, pp 109–118

  • Singh VB, Ramanathan AL, Pottakkal JG, Kumar M (2014a) Seasonal variation of the solute and suspended sediment load in Gangotri glacier meltwater, central Himalaya, India. J Asian Earth Sci 79:224–234. https://doi.org/10.1016/j.jseaes.2013.09.010

  • Singh VB, Ramanathan AL, Pottakkal JG, Kumar N, Sharma P (2014b) Dissolved ion chemistry of Bara Shigri glacier meltwater, western Himalaya, India. In: Gupta P, Santosh KM, Boojh R (eds) Sundaresan J. Natural Hazards and Mountain Resources, Scientific Publishers (India), Climate Change & Himalaya, pp 22–29

  • Singh VB, Ramanathan AL, Sharma P, Pottakkal JG (2015a) Dissolved ion chemistry and suspended sediment characteristics of meltwater draining from Chhota Shigri glacier, Western Himalaya, India. Arab J Geosci 8:281–293. https://doi.org/10.1007/s12517-013-1176-y

  • Singh VB, Ramanathan AL, Sharma P (2015b) Major ion chemistry and assessment of weathering processes of the Patsio glacier meltwater, Western Himalaya, India. Environ Earth Sci 73:387–397. https://doi.org/10.1007/s12665-014-3432-1

  • Singh VB, Ramanathan AL, Kuriakose T (2015c) Hydrogeochemical assessment of meltwater quality using major ion chemistry: a case study of Bara Shigri glacier, Western Himalaya India. Natl Acad Sci Lett 38(2):147–151. https://doi.org/10.1007/s40009-014-0310-z

  • Singh VB, Ramanathan AL, Pottakkal JG, Kumar M (2015d) Hydrogeochemistry of meltwater of the Chaturangi glacier, Garhwal Himalaya, India. Proc Natl Acad Sci India Sect A Phys Sci 85(1):187–195. https://doi.org/10.1007/s40010-014-0181-1

  • Singh VB, Ramanathan AL, Mandal A, Angchuk T (2015e) Transportation of suspended sediment from meltwater of the Patsio Glacier, Western Himalaya, India. Proc Natl Acad Sci India Sect A Phys Sci 85(1):169–175. https://doi.org/10.1007/s40010-015-0198-0

  • Singh VB, Ramanathan AL, Pottakkal JG (2016) Glacier runoff and transport of suspended sediment from the Chhota Shigri glacier, Western Himalaya India. Environ Earth Sci 75:695. https://doi.org/10.1007/s12665-016-5271-8

    Article  Google Scholar 

  • Singh AT, Laluraj CM, Sharma P, Patel LK, Thamban M (2017) Export fluxes of geochemical solutes in the meltwater stream of Sutri Dhaka Glacier, Chandra basin. Western Himalaya Environ Monit Assess 189:555. https://doi.org/10.1007/s10661-017-6268-9

    Article  Google Scholar 

  • Singh KK, Singh DK, Negi HS, Kulkarni AV, Gusain HS, Ganju A, Babu GRK (2018a) Temporal change and flow velocity estimation of Patseo glacier, Western Himalaya India. Curr Sci 114(4):776–784. https://doi.org/10.18520/cs/v114/i04/776-784

  • Singh VB, Ramanathan AL, Keshari AK, Ranjan S, Kumar N, Yadav SK (2018b) Climatic influence on hydrogeochemistry of meltwater draining from Chhota Shigri Glacier, Himachal Pradesh. India J Climate Change 4(1):23–31. https://doi.org/10.3233/JCC-180003

  • Singh VB, Chand P, Sharma MC, Baruah UD, Kumar M, Kumar N, Ramanathan AL (2020a) Evaluation of meltwater quality using dissolved ions chemistry and multivariate statistical methods: a case study of the Manimahesh Glacier, Ravi Basin, Himachal Pradesh, India. Proc Natl Acad Sci India Sect A Phys Sci 90(1):57–66. https://doi.org/10.1007/s40010-018-0560-0

  • Singh VB, Keshari AK, Ramanathan AL (2020b) Major ion chemistry and atmospheric CO2 consumption deduced from the Batal glacier, Lahaul-Spiti valley, Western Himalaya, India. Environ Dev Sustain 22:6585–6603. https://doi.org/10.1007/s10668-019-00501-6

  • Singh VB (2011) Hydro-meteorological and hydro-geochemical characteristics of Chhota Shigri glacier, Lahaul-Spiti Valley, Himachal Pradesh, India. M.Phil Dissertation, Jawaharlal Nehru University, New Delhi

  • Singh VB (2016) Hydrological characteristics and solute dynamics of meltwater draining from Chhota Shigri glacier, Western Himalaya, India. Ph.D. Thesis, Jawaharlal Nehru University, New Delhi

  • Stallard RF (1980) Major Elements Geochemistry of the Amazon River System. Ph.D Thesis, WHOI-80–29, MIT/Woods Hole Oceanographic Institution, USA

  • Sundriyal S, Bhan U, Selvakumar S, Singh R, Dobhal DP (2021) Two decadal changes in the major ions chemistry of melt water draining from Dokriani Glacier, central Himalaya, India. J Geol Soc India 97:308–314

    Article  Google Scholar 

  • Thapa K, Shrestha S, Sharma K, Shrestha N, Bhandari R, Bashyal A, Shrestha S (2019) Assessment of physico-chemical parameters of meltwater of Ponkar glacier, Manang Nepal. Hydrol Current Res 10(2):313

    Google Scholar 

  • Tiwari S, Kumar A, Gupta AK, Verma A, Bhambri R, Sundriyal S, Yadav J (2018) Hydrochemistry of meltwater draining from Dokriani Glacier during early and late ablation season, West Central Himalaya. Himal Geol 39(1):121–132

    Google Scholar 

  • Tranter M, Brown GH, Raiswell R, Sharp MJ, Gurnell AM (1993) A conceptual model of solute acquisition by Alpine glacier meltwaters. J Glaciol 39(133):573–581. https://doi.org/10.3189/S0022143000016464

    Article  Google Scholar 

  • Tranter M, Sharp MJ, Lamb HR, Brown GH, Hubbard BP, Willis IC (2002) Geochemical weathering at the bed of Haut glacier d’Arolla, Switzerland—a new model. Hydrol Proc 16(5):959–993. https://doi.org/10.1002/hyp.309

    Article  Google Scholar 

  • Tranter M, Wadham JL (2014) Geochemical weathering in glacial and proglacial environments. In: Holland HD, Turekian KK (ed) Treatise on geochemistry. Elsiver, pp 157–173.

  • Trivedi S, Gopal K, Singh J (2010) Hydrogeochemical attributes of the meltwater emerging from Gangotri glacier, Uttaranchal. J Geol Soc India 76:105–110. https://doi.org/10.1007/s12594-010-0087-8

    Article  Google Scholar 

  • Tuladhar A, Kayastha RB, Gurung S, Shrestha A (2015) Hydro-Chemical characterization of glacial melt waters draining from Langtang valley. Nepal J Water Resour Protect 7:605–613. https://doi.org/10.4236/jwarp.2015.78049

    Article  Google Scholar 

  • UNEP (2008) Global glacier changes: facts and figures. UNEP/WGMS, Geneva

    Google Scholar 

  • Vaux JH, Balk D, Cook ER, Gleick P, Lau WK, Levy M, Malone EL, Mcdonald R, Shindell D, Thompson LG, Wescoat JL, Williams MW (2012) Himalayan glaciers: climate change, water resources and water security. National Academies Press, National Academy of Sciences, Washington

    Google Scholar 

  • Vohra CP (1981) Note on recent glaciological expedition in Himachal Pradesh. Special Publication Number 6, Geological Survey of India, Delhi, pp 26–29

  • Wadham JL, Hodson AJ, Tranter M, Dowdeswell JA (1998) The hydrochemistry of meltwater draining a polythermal-based, high Arctic glacier, south Svalbard. I: The ablation season. Hydrol Proc 12:1825–1849. https://doi.org/10.1002/1099-1085(200007)14:10%3c1767::AID-HYP103%3e3.0.CO;2-Q

    Article  Google Scholar 

  • Wagnon P, Linda A, Arnaud Y, Kumar R, Sharma P, Vincent C, Pottakkal JG, Berthier E, Ramanathan AL, Hasnain SI, Chevallier P (2007) Four years of mass balance on Chhota Shigri glacier (Himachal Pradesh, India), a new benchmark glacier in the western Himalaya, India. J Glaciol 53(183):603–611. https://doi.org/10.3189/002214307784409306

    Article  Google Scholar 

  • WGMS (2008) Fluctuations of Glaciers 2000–2005, Volume IX. In: Haeberli W, Zemp M, Kääb A, Paul F, Hoelzle M (ed) ICSU(FAGS)/IUGG(IACS)/UNEP/UNESCO/WMO. World Glacier Monitoring Service, Zurich, Switzerland

  • Xu M, Lu A, Xu F, Wang B (2008) Seasonal chemical composition variations of wet deposition in Urumchi, Northwestern China. Atmos Environ 42:1042–1048. https://doi.org/10.1016/j.atmosenv.2007.11.008

    Article  Google Scholar 

  • Zhang F, Qaiser FUR, Zeng C, Pant RR, Wang G, Zhang H, Chen D (2019) Meltwater hydrochemistry at four glacial catchments in the headwater of Indus River. Environ Sci Pollut Res 26:23645–23660. https://doi.org/10.1007/s11356-019-05422-5

    Article  Google Scholar 

  • Zhu B, Yu J, Qin X, Rioual P, Liu Z, Zhang Y, Jiang F, Mu Y, Li H, Ren X, Xiong H (2013) The significance of mid-latitude rivers for weathering rates and chemical fluxes: evidence from northern Xinjiang rivers. J Hydrol 486:151–174. https://doi.org/10.1016/j.jhydrol.2013.01.016

    Article  Google Scholar 

Download references

Acknowledgements

The first author of this manuscript Virendra Bahadur Singh is grateful to the UGC, Govt. of India, under the UGC- Dr. D. S. Kothari Postdoctoral Fellowship scheme [Grant No. F.4-2/2006 (BSR)/ES/17-18/0057] for the research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra Bahadur Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Broder J. Merkel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.B., Kumar, P. Hydrogeochemical characteristics of meltwater draining from Himalayan glaciers: a critical review. Arab J Geosci 15, 680 (2022). https://doi.org/10.1007/s12517-022-09903-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-09903-9

Keywords

Navigation