Skip to main content

Advertisement

Log in

Hydrochemical assessment (major ions and Hg) of meltwater in high altitude glacierized Himalayan catchment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Snowpack and glacial melt samples were collected to understand the hydrochemical, isotopic characteristics and the source of Hg contamination in high altitude glacierized Himalayan catchment. Both the snow and glacial melt were acidic in nature with calcium and magnesium as the dominant cations and bicarbonate and chloride as the dominant anions. The major ion concentrations for cations were found to be Ca2+ > Mg2+ > Na+ > K+ and HCO3 > Cl > SO42− > NO3 for anions. The atmospheric processes like the precipitation source and aerosol scavenging control the snow chemistry and the weathering of the rocks modify the hydrochemistry of glacial melt. The samples of both the snow and glacial melt were classified as Ca-Mg-HCO3 type. The concentration of Hg in snow (154.95 ng L−1) and glacial melt (112.04 ng L−1) was highest (still lower compared to the maximum permissible limit (1000 ng L−1) by WHO in drinking water) during summer season (August–September) and lowest (snow 2.2 and 40.01 ng L−1 for glacial melt) during winter (November). The results reveal that mercury concentration in snowpacks is attributed to the combined mixing of long-range transport of pollutants via westerlies throughout the year and the industrial effluents coming from highly industrial belts of Panjab, Haryana, Rajasthan, Indo-Gangetic plains, and neighboring areas via southwest monsoons during August–September. However, in glacial melt, the Hg concentration was typically controlled by rate of melting, leaching, and percolation. Higher degree and rate of glacial melting decreases the Hg concentration in glacial melt. Stable isotopic analysis and backward air mass trajectory modeling also corroborate the source of precipitation from southwest monsoons during August–September, with its air mass trajectories passing through the highly industrialized belts of Indo-Gangetic plain and adjoining areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad, S., & Hasnain, S. I. (2001). Snow and stream water chemistry of Ganga headwater basin, Garhwal Himalaya, India. Hydrological Sciences Journal, 46, 103–111.

    Article  CAS  Google Scholar 

  • AMAP/UNEP. (2008). Technical background report to the global atmospheric mercury assessment. Geneva: Arctic Monitoring and Assessment Programme/UNEP Chemicals.

    Google Scholar 

  • Apha, A. (2005). WEF, 2005. Standard methods for the examination of water and wastewater, 21, 258–259.

    Google Scholar 

  • ATSDR. (1999). Toxicological profile for mercury. Atlanta: U.S. Department of Health and Human Services, Public Health Service. Agency for Toxic Substances and Disease Registry.

    Google Scholar 

  • ATSDR (2003). Mercury exposures from 3M Tartan brand floors. Westerville: Ohio Department of Health, Health Consultation. http://www.atsdr.cdc.gov/HAC/PHA/westerville/wes_toc.html. Accessed 19 March 2003.

  • Bhat, N., & Jeelani, G. (2015). Delineation of the recharge areas and distinguishing the sources of karst springs in Bringi watershed, Kashmir Himalayas using hydrochemistry and environmental isotopes. Journal of Earth System Science, 124(8), 1667–1676.

    Article  CAS  Google Scholar 

  • Brown, G. H. (2002). Glacier meltwater hydrochemistry. Appl Geochem, 17, 855–883.

    Article  CAS  Google Scholar 

  • Brown, G. H., Sharp, M., & Tranter, M. (1996). Subglacial chemical erosion—Seasonal variations in solute provenance, Haut glacier d’Arolla, Valais, Switzerland. Annals of Glaciology, 22, 25–31.

    Article  CAS  Google Scholar 

  • Burger, L. C., Qureshi, A., Vadenbo, C., & Hellweg, S. (2013). Anthropogenic mercury flows in India and impacts of emission controls. Environmental Science & Technology, 47, 8105–8113.

    Google Scholar 

  • Clark, I., & Fritz, P. (1997). Environmental isotopes in hydrogeology. New York: Lewis Publishers.

    Google Scholar 

  • Cong, Z., Kang, S., Liu, X., & Wang, G. (2007). Elemental composition of aerosol in the Nam Co region, Tibetan Plateau, during summer monsoon season. Atmospheric Environment, 41(6), 1180–1187.

    Article  CAS  Google Scholar 

  • Cong, Z., Kang, S., Zhang, Y., & Li, X. (2010). Atmospheric wet deposition of trace elements to central Tibetan Plateau. Applied Geochemistry, 25(9), 1415–1421.

    Article  CAS  Google Scholar 

  • Craig, H. (1961). Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science., 133(3467), 1833–1834.

    Article  CAS  Google Scholar 

  • Dommergue, A., Sprovieri, F., Pirrone, N., Ebinghaus, R., Brooks, S., Courteaud, J., & Ferrari, C. P. (2010). Overview of mercury measurements in the Antarctic troposphere. Atmos Chem Phys Dis, 10(7), 3309–3319.

    Article  CAS  Google Scholar 

  • Draxler, R. R., & Rolph, G. D. (2006). Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Model, Version 4.8, via NOAA ARL Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, Maryland. ESRI. 2006. ArcMap Geographic Information System (GIS).

  • Filippa, G., Freppaz, M., Williams, M. W., & Zanini, E. (2010). Major element chemistry in inner alpine snowpacks (Aosta Valley Region, NW Italy). Cold Regions Science and Technology, 64(2), 158–166.

    Article  Google Scholar 

  • Fortner, S. K., Lyons, W. B., Fountain, A. G., Welch, K. A., & Kehrwald, N. M. (2009). Trace element and major ion concentrations and dynamics in glacier snow and melt: Eliot Glacier, Oregon Cascades. Hydrological Processes: An International Journal, 23(21), 2987–2996.

    Article  CAS  Google Scholar 

  • Gaillardet, J., Dupré, B., Louvat, P., & Allegre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1–4), 3–30.

    Article  CAS  Google Scholar 

  • Galloway, J. N. (1989). Atmospheric acidification: Projections for the future. Ambio, 18, 161–166.

    Google Scholar 

  • Garg, A., Shukla, P. R., & Kapshe, M. (2006). The sectoral trends of multi gas emissions inventory of India. Atmospheric Environment, 40, 4608–4620.

    Article  CAS  Google Scholar 

  • Garrels, R. M., & Mackenzie, F. T. (1971). Evolution of sedimentary rocks. New York: W W Norton 450p.

    Google Scholar 

  • Hasnain, S. I., & Thayyen, R. J. (1999). Factors controlling suspended sediments transport in Himalayan glacier meltwaters. Journal of Hydrology, 181, 49–62.

    Article  Google Scholar 

  • Hasnain, S. I., Subramanian, V., & Dhanpal, K. (1989). Chemical characteristics and suspended sediment load of meltwaters from a Himalayan glacier in India. Journal of Hydrology, 106, 99–108.

    Article  CAS  Google Scholar 

  • Huang, J., Kang, S., Guo, J., Zhang, Q., Jenkins, M., Zhang, G., & Wang, K. (2012a). Seasonal variations, speciation and possible sources of mercury in the snowpack of Zhadang glacier, Mt. Nyainqêntanglha, southern Tibetan Plateau. Science of the Total Environment, 429, 223–230.

    Article  CAS  Google Scholar 

  • Huang, J., Kang, S., Zhang, Q., Jenkins, M., Guo, J., Zhang, G., & Wang, K. (2012b). Spatial distribution and magnification processes of mercury in snow from high-elevation glaciers in the Tibetan Plateau. Atmospheric Environment, 46, 140–146.

    Article  CAS  Google Scholar 

  • Huang, J., Kang, S., Zhang, Q., Yan, H., Guo, J., Jenkins, M. G., Zhang, G., & Wang, K. (2012c). Wet deposition of mercury at a remote site in the Tibetan Plateau: Concentrations, speciation, and fluxes. Atmospheric Environment, 62, 540–550.

    Article  CAS  Google Scholar 

  • Huang, J., Kang, S., Guo, J., Sillanpää, M., Zhang, Q., Qin, X., Du, W., & Tripathee, L. (2014). Mercury distribution and variation on a high-elevation mountain glacier on the northern boundary of the Tibetan Plateau. Atmospheric Environment, 96, 27–36.

    Article  CAS  Google Scholar 

  • Huang, J., Kang, S., Tian, L., Guo, J., Zhang, Q., Cong, Z., Sillanpää, M., Sun, S., & Tripathee, L. (2016). Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet. Science of the Total Environment, 566, 1215–1222.

    Article  Google Scholar 

  • Jeelani, G. (2005). Chemical quality of the spring waters of Anantnag, Kashmir. Journal of the Geological Society of India, 66, 453–462.

    CAS  Google Scholar 

  • Jeelani, G., Bhat, N. A., Shivana, K., & Bhat, M. Y. (2011). Geochemical characterization of surface water and stream water in SE Kashmir Valley, Western Himalaya: implications to water-rock interaction. Journal of Earth System Science, 120, 921–932.

    Article  CAS  Google Scholar 

  • Jeelani, G., Faddema, J., Van der Veen, C., & Leigh, S. (2012). Role of snow and glacier melt in controlling river hydrology in Liddar watershed (Western Himalaya). Water Resources Research, 48, 1–16.

    Article  Google Scholar 

  • Jeelani, G., Saravana, U., & Bhishm, K. (2013). Variation of δ18O and δD in precipitation and stream waters across the Kashmir Himalaya (India) to distinguish and estimate the seasonal sources of stream flow. Journal of Hydrology, 481, 157–165.

    Article  CAS  Google Scholar 

  • Jeelani, G., Deshpande, R. D., Shah, R. A., & Hassan, W. (2017). Influence of southwest monsoons in the Kashmir Valley, western Himalayas. Isotopes in Environmental and Health Studies, 53(4), 400–412. https://doi.org/10.1080/10256016.2016.1273224.

    Article  CAS  Google Scholar 

  • Jenkins, A., Ferrier, R., & Waters, D. (1993). Melt water chemistry and its impact on stream water quality. Hydrological Processes, 7(2), 193–203.

    Article  Google Scholar 

  • Kanamitsu, M. (1989). Description of the NMC global data assimilation and forecast system. Weather and Forecasting, 4(3), 335–342.

    Article  Google Scholar 

  • Khan, A. A., Pant, N. C., Sarkar, A., Tandon, S. K., Thamban, M., & Mahalinganathan, K. (2017). The Himalayan cryosphere: A critical assessment and evaluation of glacial melt fraction in the Bhagirathi basin. Geoscience Frontiers, 8(1), 107–115.

    Article  CAS  Google Scholar 

  • Kulkarni, A. V., Bahuguna, I. M., Rathore, B. P., Singh, S. K., Randhawa, S. S., Sood, R. K., & Dhar, S. (2007). Glacial retreat in Himalaya using Indian remote sensing satellite data. Current Science, 92(1), 69–74.

    Google Scholar 

  • Lau, K. M., Kim, M. K., & Kim, K. M. (2006). Asian monsoon anomalies induced by aerosol direct effects. Climate Dynamics, 26, 855–864. https://doi.org/10.1007/s00382-006-0114-z.

    Article  Google Scholar 

  • Legrand, & Mayewski. (1997). Glaciochemistry of polar ice cores: A review. Reviews of Geophysics, 35, 219–243.

    Article  CAS  Google Scholar 

  • Li, X., Kang, S., He, X., Qu, B., Tripathee, L., Jing, Z., Paudyal, R., Li, Y., Zhang, Y., Yan, F., & Li, G. (2017). Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau. The Science of the Total Environment, 587, 482–490.

    Article  Google Scholar 

  • Lone, S. A., Jeelani, G., Deshpande, R. D., & Mukherjee, A. (2019). Stable isotope (δ18O and δD) dynamics of precipitation in a high altitude Himalayan cold desert and its surroundings in Indus river basin, Ladakh. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2019.01.025.

    Article  Google Scholar 

  • Mann, J. L., Long, S. E., Shuman, C. A., & Kelly, W. R. (2005). Determination of mercury content in a shallow firn core from Greenland by isotope dilution inductively coupled plasma mass spectrometry. Water, Air, and Soil Pollution, 163, 1932.

    Article  Google Scholar 

  • McFarland, R., & Reigel, H. (1978). Chronic mercury poisoning from a single brief exposure. Journal of Occupational Medicine, 20, 534–534.

    Article  Google Scholar 

  • Merlivat, L., & Jouzel, J. (1979). Global climatic interpretation of the deuterium–oxygen 18 relationship for precipitation. Journal of Geophysical Research, 84, 5029–5033.

    Article  Google Scholar 

  • Meybeck, M. (1986). Composition desruisseaunon pollues de France. Sciences Géologiques Bulletin (Strasbourg), 39, 3–77.

    Article  Google Scholar 

  • Middlemiss, C. S. (1910). Revision of Silurian-Trias sequence of Kashmir. Record Geological Survey of India, 40(3), 206–260.

    Google Scholar 

  • Negrel, P., Allegre, C. J., Dupre, B., & Lewin, E. (1993). Erosion sources determined by inversion of major and trace element ratios in river water: The Congo basin case. Earth Planet Science Letters, 120, 59–76.

    Article  CAS  Google Scholar 

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139.

    Article  CAS  Google Scholar 

  • Oinam, J. D., Ramanathan, A. L., & Singh, G. (2012). Geochemical and statistical evaluation of groundwater in Imphal and Thoubal district of Manipur, India. Journal of Asian Earth Sciences, 48, 136–149.

    Article  Google Scholar 

  • Pacyna, J. M., & Pacyna, E. G. (2001). Assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews, 9(4), 269–298.

    Article  CAS  Google Scholar 

  • Pacyna, E. G., Pacyna, J. M., Fudala, J., Strzelecka-Jastrzab, E., Hlawiczka, S., Panasiuk, D., Nitter, S., Pregger, T., Pfeiffer, H., & Friedrich, R. (2007). Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmospheric Environment, 41, 8557e8566.

    Article  Google Scholar 

  • Peng, H., Mayer, B., Harris, S., & Krouse, H. R. (2004). A 10-year record of stable isotope ratios of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada. Tellus Series B: Chemical and Physical Meteorology, 56, 147–159.

    Article  Google Scholar 

  • Piper, A. M. (1944). A graphical procedure in the geochemical interpretation of water analysis. Transactions of the American Geophysical Union, 25, 914–923.

    Article  Google Scholar 

  • Pomeroy, J. W., & Jones, H. G. (1996). Wind-blown snow: Sublimation and changes to polar snow. In E. Wolff & R. C. Bales (Eds.), Processes of Chemical Exchange Between the Atmosphere and Polar Snow, NATO-ASI Series I. 43 (pp. 453–490). New York: Springer Verlag.

    Chapter  Google Scholar 

  • Prasad, A. K., & Singh, R. P. (2007). Changes in aerosol parameters during major dust storm events (2001–2005) over the Indo-Gangetic basin using AERONET and MODIS data. Journal of Geophysical Research, 112(D9), D09208. https://doi.org/10.1029/2006JD007778.

    Article  Google Scholar 

  • Prasad, A. K., Singh, R. P., & Singh, A. (2006). Seasonal climatology of aerosol optical depth over Indian subcontinent: Trend and departures in recent years. International Journal of Remote Sensing, 27(12), 2323–2329. https://doi.org/10.1080/01431160500043665.

    Article  Google Scholar 

  • Raiswell, R., & Thomas, A. G. (1984). Solute acquisition in glacial meltwaters, I. Fjallsjokull (south-east Iceland): Bulk meltwaters with closed system characteristics. Journal of Glaciology, 30(104), 35–43.

    Article  CAS  Google Scholar 

  • Ramanathan, A. L. (2011). Status report on Chhota Shigri glacier (Himachal Pradesh). Department of Science and Technology, Ministry of Science and Technology, New Delhi. Himal. Glaciol. Tech. Rep, 1, 88.

    Google Scholar 

  • Raza, M., Ahmad, A., & Mohammad, A. (1978). The Valley of Kashmir: A geographical interpretation. The Land Vikas, 1, 148.

    Google Scholar 

  • Saleem, M., & Jeelani, G. (2017). Geochemical, isotopic and hydrological mass balance approaches to constrain the lake water–groundwater interaction in dal Lake, Kashmir Valley. Environmental Earth Sciences, 76(15), 533.

    Article  Google Scholar 

  • Saleem, M., Jeelani, G., & Shah, R. A. (2015). Hydrogeochemistry of Dal Lake and the potential for present, future management by using facies, ionic ratios, and statistical analysis. Environmental Earth Sciences, 74(4), 3301–3313.

    Article  CAS  Google Scholar 

  • Scheuhammer, A. M., Meyer, M. W., Sandheinrich, M. B., & Murray, M. W. (2007). Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio, 36, 12–19.

    Article  CAS  Google Scholar 

  • Schuster, P. F., Krabbenhoft, D. P., Naftz, D. L., Cecil, L. D., Olson, M. L., Dewild, J. F., Susong, D. D., Green, J. R., & Abbott, M. L. (2002). Atmospheric mercury deposition during the last 270 years: A glacial ice core record of natural and anthropogenic sources. Environmental Science & Technology, 36, 2303–2310.

    Article  CAS  Google Scholar 

  • Selin, N. E. (2009). Global biogeochemical cycling of mercury: A review. Annual Review of Environment and Resources., 34, 43–63.

    Article  Google Scholar 

  • Sharma, S. S., & Ganju, A. (1999). Complexities of avalanche fore-casting in Western Himalaya—An overview. Cold Regions Science and Technology, 95–102.

  • Sharma, P., Ramanathan, A. L., & Pottakkal, J. (2013). Study of solute sources and evolution of hydrogeochemical processes of the Chhota Shigri glacier meltwaters, Himachal Himalaya, India. Hydrological Sciences Journal, 58(5), 1128–1143.

    Article  CAS  Google Scholar 

  • Singh, P., & Bengtsson, L. (2005). Impact of warmer climate on melt and evaporation for the rainfed, snowfed and glacier-fed basins in the Himalayan region. Journal of Hydrology, 300, 140–154.

    Article  Google Scholar 

  • Singh, A. K., & Hasnain, S. I. (1998). Major ion chemistry and weathering control in a high altitude basin-Alaknanda River, Garhwal Himalaya, India. Hydrological Sciences Journal, 43, 825–844.

    Article  CAS  Google Scholar 

  • Singh, R. P., Dey, S., Tripathi, S. N., Tare, V., & Holben, B. (2004). Variability of aerosol parameters over Kanpur, northern India. Journal of Geophysical Research, 109, D23206. https://doi.org/10.1029/2004JD004966.

    Article  Google Scholar 

  • Singh, V. B., Ramanathan, A. L., Pottakkal, J. G., Sharma, P., Linda, A., Azam, M. F., & Chatterjee, C. (2012). Chemical characterisation of meltwater draining from Gangotri glacier, Garhwal Himalaya, India. Journal of Earth System Science, 121(3), 625–636.

    Article  CAS  Google Scholar 

  • Singh, V. B., Ramanathan, A. L., & Kuriakose, T. (2015a). Hydrogeochemical assessment of meltwater quality using major ion chemistry: A case study of Bara Shigri Glacier, Western Himalaya, India. National Academy Science Letters, 38(2), 147–151.

    Article  CAS  Google Scholar 

  • Singh, V. B., Ramanathan, A. L., Pottakkal, J. G., & Kumar, M. (2015b). Hydrogeochemistry of meltwater of the Chaturangi glacier, Garhwal Himalaya, India. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 85(1), 187–195.

    Article  CAS  Google Scholar 

  • Singh, V. B., Ramanathan, A. L., & Sharma, P. (2015c). Major ion chemistry and assessment of weathering processes of the Patsio glacier meltwater, Western Himalaya, India. Environmental Earth Sciences, 73(1), 387–397.

    Article  CAS  Google Scholar 

  • Tiwari, S. K., Kumar, A., Gupta, A. K., Verma, A., Bhambri, R., Sundriyal, S., & Yadav, J. (2018). Hydrochemistry of meltwater draining from Dokriani Glacier during early and late ablation season, West Central Himalaya. Himalayan Geology, 39(1), 121–132.

    Google Scholar 

  • US, EPA. (2002). Method 1631: Revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. Office of Water, Washington, DC (EPA-821-R-02-19).

  • USEPA (1997). Mercury study, report to Congress, volume V: Health effects of mercury and mercury compounds. Office of Air Quality Planning & Standards and Office of Research and Development. EPA-452/R- 97-007.

  • Wadia, D. N. (1975). Geology of India. New Delhi: Tata Mc-Graw Hill 508 p.

    Google Scholar 

  • Wake, C. P. (1989). Glaciochemical investigations as a tool for determining the spatial and seasonal variation of snow accumulation in the Central Karakoram, North Pakistan. Annals of Glaciology, 13, 279–284.

    Article  Google Scholar 

  • Wake, C. P., Mayawaski, P. A., & Wang, P. (1992). Anthropogenic sulphate and Asian dust signal in snow from the Tien Shan, Northwest China. Annals of Glaciology, 16, 45–52.

    Article  CAS  Google Scholar 

  • Wake, C. P., Mayewski, P. A., Li, Z., Han, J., & Qin, D. (1994). Modern eolian dust deposition in central Asia. Tellus B: Chemical and Physical Meteorology, 46(3), 220–233.

    Article  Google Scholar 

  • WHO (World Health Organization). (1990). Methylmercury, environmental health criteria 101 (pp. 1–144). Geneva: World Health Organization.

    Google Scholar 

  • Zhang, Q., Huang, J., Wang, F., Mark, L., Xu, J., Armstrong, D., Li, C., Zhang, Y., & Kang, S. (2012). Mercury distribution and deposition in glacier snow over western China. Environmental Science & Technology, 46, 5404–5413.

    Article  CAS  Google Scholar 

  • Zhao, G., Li, W., Li, F., Zhang, F., & Liu, G. (2018). Hydrochemistry of waters in snowpacks, lakes and streams of Mt. Dagu, eastern of Tibet Plateau. Science of the Total Environment, 610, 641–650.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jeelani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lone, A., Jeelani, G., Deshpande, R.D. et al. Hydrochemical assessment (major ions and Hg) of meltwater in high altitude glacierized Himalayan catchment. Environ Monit Assess 191, 213 (2019). https://doi.org/10.1007/s10661-019-7338-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7338-y

Keywords

Navigation