Skip to main content

Sources of Solute and Hydrochemical Analysis of Gangotri Glacier Meltwater

  • Chapter
  • First Online:
Water, Cryosphere, and Climate Change in the Himalayas

Abstract

In this study, we have examined the ionic and physical properties of Gangotri glacier meltwater as well as the prominent weathering process to determine the sources of solute. The meltwater samples were collected throughout the ablation periods of 2015 and 2016 near the snout of the glacier. The results, obtained by chemical analysis of the meltwater indicate that it is somewhat acidic in nature with CaSO4-type water. In the meltwater, Ca2+ is the foremost cation followed by Mg2+, Na+, and K+ as well as SO42− is the leading anion followed by HCO3, Cl−, and F during both the ablation periods. Based on the calculated denudation rate of the ions, we conclude that denudation rates of cation were 20.24 and 18.66 ton/km2/ablation in 2015 and 2016 correspondingly, while the anion denudation rates were 89.01 and 92.13 ton/km2/ablation during years 2015 and 2016 correspondingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adimalla N, Dhakate R, Kasarla A, Taloor AK (2020) Appraisal of groundwater quality for drinking and irrigation purposes in Central Telangana, India. Groundw Sust Dev 10:P100334. https://doi.org/10.1016/j.gsd.2020.100334

    Article  Google Scholar 

  • Adimalla N, Taloor AK (2020) Introductory editorial for ‘Applied Water Science’special issue: “Groundwater contamination and risk assessment with an application of GIS”. Appl Water Sci 10:216. https://doi.org/10.1007/s13201-020-01291-3

    Article  Google Scholar 

  • Ahmad S, Hasnain SI (2001) Chemical characteristics of stream draining from Dudu glacier: an Alpine meltwater stream in Ganga Headwater, Garhwal Himalaya. J China Univ Geosci 12(1):75–83

    Google Scholar 

  • Anderson SP, Drever JI, Humphrey NF(1997) Chemical weathering in glacial environments. Geology 25(5):399–402. https://doi.org/10.1130/0091-7613(1997)025%3c0399:CWIGE%3e2.3.CO;2

  • APHA (2005) Standard methods for examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Arita K (1983) Origin of the inverted metamorphism of the lower Himalayas, Central Nepal. Tectonophysics 95(398):43–60. https://doi.org/10.1016/0040-1951(83)90258-5

    Article  Google Scholar 

  • Barandum M, Huss M, Usubaliev R, Azisov E, Berthier E, Kääb A, et al (2018) Multi-decadal mass balance series of three Kyrgyz glaciers inferred from modelling constrained with repeated snow line observations. The Cryosphere 12:1899–1919. https://doi.org/10.5194/tc-12-1899-2018

  • Bisht H, Sah S, Kumar K, Arya PC, Tewari M (2017) Quantification of variability in discharge and suspended sediment concentration of meltwater of Gangotri Glacier, GarhwalHimalaya. ENVIS Bull Himal Ecol 25:10–16

    Google Scholar 

  • Bisht H, Arya PC, Kumar K (2018) Hydro-chemical analysis and ionic flux of meltwater runoff from Khangri Glacier, West Kameng, Arunachal Himalaya, India. Environ Earth Sci 77:1–16. https://doi.org/10.1007/s12665-018-7779-6

    Article  Google Scholar 

  • Bisht H, Rani M, Kumar K, Sah S, Arya PC (2019) Retreating rate of Chaturangi glacier, Garhwal Himalaya, India derived from kinematic GPS survey and satellite data. CurrSci 116:304–311. https://doi.org/10.18520/cs/v116/i2/304-311

  • Bisht H, Kotlia BS, Kumar K, Arya PC, Sah SK, Kukreti M, Chand P (2020a) Estimation of suspended sediment concentration and meltwater discharge draining from the Chaturangi glacier, Garhwal Himalaya. Arab J Geosci 13(6):1–12. https://doi.org/10.1007/s12517-020-5204-w4

    Article  Google Scholar 

  • Bisht H, Kotlia BS, Kumar K, Joshi LM, Sah SK, Kukreti M (2020b) Estimation of the recession rate of Gangotri glacier, Garhwal Himalaya (India) through kinematic GPS survey and satellite data. Environ Earth Sci 13(6):1–12. https://doi.org/10.1007/s12665-020-090780

  • Bisht H, Kotlia BS, Kumar K, Dumka RK, Taloor AK, Upadhyay R (2020c) GPS derived crustal velocity, tectonic deformation and strain in the Indian Himalayan arc. Quat Int. https://doi.org/10.1016/j.quaint.2020.04.028

  • Bogen J (1989) Glacial sediment production and development of hydroelectric power in glaciered areas. Ann Glaciol 13:6–11

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley JG, et al (2012) The state and fate of Himalayan glaciers. Science 336(6079):310–314. https://doi.org/10.1126/science.1215828

  • Brown GH (2002) Glacier meltwater hydrochemistry. Appl Geochem 17:855–883

    Google Scholar 

  • Brown GH, Tranter M, Sharp M (1996) Subglacial chemical erosion- seasonal variations in solute provenance, Haut glacier d’Arolla, Switzerland. Ann Glaciol 22:25–31. https://doi.org/10.3189/1996AoG22-1-25-31

    Article  Google Scholar 

  • Clow DW, Mast MA (2010) Mechanisms for chemostatic behavior in catchments: implications for CO2 consumption by mineral weathering. Chem Geol 269:40–51. https://doi.org/10.1016/j.chemgeo.2009.09.014

  • Collins DN (1979) Hydrochemistry of meltwater draining from an Alpine glacier. Arctic, Antarctic and Alpine Res 11:307–324. https://doi.org/10.3189/S0022143000029877

    Article  Google Scholar 

  • Dickinson WR (1970) Interpreting detrital modes of greywake and arkose. J Sediment Pet 40:695–707

    Google Scholar 

  • Dimri AP, Yasunari T, Kotlia BS, Mohanty UC, Sikka DR (2016) Indian winter monsoon; present and past. Earth Sci Rev 163:297–322. https://doi.org/10.1016/j.earscirev.2016.10.008

    Article  Google Scholar 

  • Fang F, Zhongqin L, Shuang J, Jhiwen D, Feiteng W (2012) Hydrochemical characteristics and solute dynamics of meltwater runoff of urumqi glacier no. 1, Eastern Tianshan, Northwest China. J Mt Sci 9:472–482. https://doi.org/10.1007/s11629-012-2316-7

  • Gaillardet J, Dupre B, Louvat PI, Allegre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30. https://doi.org/10.1016/S0009-2541(99)00031-5

    Article  Google Scholar 

  • Gazzi P (1966) Le Arenarie del Flysch Sopracretaceodell’ Appennino Modenese: correlazioni con ilFlysch di Monghidoro. Mineralogicae Petrographica Acta 12:69–97

    Google Scholar 

  • Gupta RP, Haritashya UK, Singh P (2005) Mapping dry/wet snowcover in the Indian Himalayas using IRS multispectral imagery. Remote Sens Environ 97:458–469. https://doi.org/10.1016/j.rse.2005.05.010

  • Hasnain SI, Subramanian V, Dhanpal K (1989) Chemical characteristics and suspended sediment load of meltwaters from a Himalayan Glacier in India. J Hydrol 106:99–108. https://doi.org/10.1016/0022-1694(89)90168-6

  • Hasnain SI, Thayyen RJ (1999) Discharge and suspended-sediment concentration of meltwaters, draining from the Dokriani glacier, Garhwal Himalaya, India. J Hydrol 218:191–198. https://doi.org/10.1016/s00221694(99)00033-5

  • Haque S, Kannaujiya S, Taloor AK, Keshri D, Bhunia RK, Ray PKC, Chauhan P (2020) Identification of groundwater resource zone in the active tectonic region of Himalaya through earth observatory techniques. Groundw Sust Dev 10:P100337. https://doi.org/10.1016/j.gsd.2020.100337

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. 3rd ed. In: U.S. Geol Survey Water-Supply Paper, vol 2254, pp 65–100

    Google Scholar 

  • Huang X, Sillanpää M, Duo B, Gjessing ET (2008) Water quality in the Tibetan Plateau: metal contents of four selected rivers. Environ Pollut 156(2):270–277

    Article  Google Scholar 

  • Jain AK, Singh S, Manickavavasagam RM (2002) Himalayan collision tectonics. Gondwana Res 7:1–14

    Google Scholar 

  • Jasrotia AS, Kumar A (2014) Groundwater Quality Mapping Based on the Geographical Information System (GIS) of Jammu District, Jammu and Kashmir India. J Spatial Hydrol 12(1):1–21

    Google Scholar 

  • Jasrotia AS, Taloor AK, Andotra U, Bhagat BD (2018) Geoinformatics based groundwater quality assessment for domestic and irrigation uses of the Western Doon valley, Uttarakhand, India. Groundw Sust Dev 6:200–212

    Google Scholar 

  • Jasrotia AS, Taloor AK, Andotra U, Kumar R (2019) Monitoring and assessment of groundwater quality and its suitability for domestic and agricultural use in the Cenozoic rocks of Jammu Himalaya, India: a geospatial technology based approach. Groundw Sust Dev 8:554–566

    Article  Google Scholar 

  • Kaul MK (1999) Inventory of Himalayan glaciers. Geol Surv India 34:136–137

    Google Scholar 

  • Khan A, Govil H, Taloor AK, Kumar G (2020) Identification of artificial groundwater recharge sites in parts of Yamuna river basin India based on remote sensing and geographical information system. Groundw Sust Dev 11:P100415. https://doi.org/10.1016/j.gsd.2020.100415

    Article  Google Scholar 

  • Krishnaswami S, Singh SK (2005) Chemical weathering in the river basins of the Himalaya, India. Curr Sci 89(5):841–849

    Google Scholar 

  • Kumar K, Miral MS, Joshi S, Pant N, Joshi V, Joshi LM (2009) Solute dynamics of meltwater of Gangotri glacier, Garhwal Himalaya, India. Environ Geol 58(6):1151–1159. https://doi.org/10.1007/s00254-008-15926

  • Kumar R, Kumar R, Singh A, Singh S, Bhardwaj A, Kumari A, Sinha RK, Gupta A (2019) Hydrogeochemical analysis of meltwater draining from BilareBanga glacier, Western Himalaya. Acta Geophys 67(2):651–660. https://doi.org/10.1007/s11600-019-00262-w

    Article  Google Scholar 

  • Kumar R, Kumar R, Singh S, Singh A, Bhardwaj A, Kumari A, Randhawa SS, Saha A (2018) Dynamics of suspended sediment load with respect to summer discharge and temperatures in Shaune Garang glacierized catchment, Western Himalaya. Acta Geophys 66:1109–1120. https://doi.org/10.1007/s11600-018-0184-4

    Article  Google Scholar 

  • Metcalfe RP (1993) Pressure, temperature and time constraints on metamorphism across the MCT zone of High Himalaya slab in the Garhwal Himalaya. In: Treloar RJ, Searle MP (eds) Himalaya tectonics. Geological Society of London, pp 495–509

    Google Scholar 

  • Naithani AK, Nainwal HC, Sati KK, Prasad C (2001) Geomorphologicalevidence of retreat of the Gangotri glacier and itscharacteristics. Curr Sci 80(1):87–88

    Google Scholar 

  • Negrel P, Allegre CJ, Dupre B, Lewin E (1993) Erosion sources determined by inversion of major and trace element ratios in river water: the Congo basin case. Earth Planet Sci Lett 120:59–76. https://doi.org/10.1016/0012-821X(93)90023-3

    Article  Google Scholar 

  • Oliva P, Viers J, Dupré B (2003) Chemical weathering in granitic environments. Chem Geol 202:225–256

    Google Scholar 

  • Orr EN, Owen LA, Saha S, Caffee MW (2019) Rates of rockwall slope erosion in the upper Bhagirathi catchment, Garhwal Himalaya. Earth Surf Process Landforms 44:3108–3127. https://doi.org/10.1002/eps.4720

    Article  Google Scholar 

  • Ostrem G (1975) Sediment transport in glacial meltwater stream. In: Jopling AV, McDonald BC (eds) Glacio-fluvial and Glacio-lacustrine Sedimentation. Society of Economic palaeontologists and Mineralogists, Oklahoma, USA. Spec Pub No 23, pp 101–122

    Google Scholar 

  • Piper AM (1944) A graphical procedure in the geochemical interpretation of water analysis. Trans Am Geophys Union 25:914–923

    Article  Google Scholar 

  • Raina VK, Srivastava D (2008) Glacieratlas of India. Geol Soc India, Bangalore

    Google Scholar 

  • Raiswell R (1984) Chemical models of solute acquisition in glacial meltwater. J Glaciol 30(104):49–57. https://doi.org/10.1017/s0022143000008480

    Article  Google Scholar 

  • Sadat N (2012) Study of fluoride concentration in the river (Godavari) and groundwater of Nanded city. Int J Eng Invent 1(1):11–15

    Google Scholar 

  • Sah S, Bisht H, Kumar K, Tiwari A, Tewari M, Joshi H (2017) Assessment of hydrochemical properties and annual variation in meltwater of Gangotri glacier system. ENVIS Bull Himal Ecol 25:17–23

    Google Scholar 

  • Sharma MK, Thayyen RJ, Jain CK, Arora M, Lal S (2019) Assessment of system characteristics of Gangotri glacier headwater stream. Sci Total Environ 662:842–851. https://doi.org/10.1016/j.scitotenv.2019.01.229

  • Sharma P, Ramanathan AL, Pottakkal J (2013) Study of solute sources and evolution of hydrogeochemical processes of the ChotaShigri Glacier meltwaters, Himachal Himalaya, India. Hydrol Sci J 58(5):1128–1143. https://doi.org/10.1080/02626667.2013.802092

  • Sharp M, Tranter M, Brown GH, Skidmore M (1995) Rates of chemical denudation and CO2 drawdown in a glacier-covered alpine catchment. Geology 23(1):61–64. https://doi.org/10.1130/00917613(1995)023%3c0061:ROCDAC%3e2.3.CO;2

  • Singh S, Sood V, Taloor AK, Prashar S, Kaur R (2020) Qualitative and quantitative analysis of topographically derived CVA algorithms using MODIS and Landsat-8 data over Western Himalayas. Quat Int, India. https://doi.org/10.1016/j.quaint.2020.04.048

    Book  Google Scholar 

  • Singh VB, Keshari AK, Ramanathan AL (2019) Major ion chemistry and atmospheric CO2 consumption deduced from the Batal glacier, Lahaul-Spiti valley, Western Himalaya, India. Environ Dev Sustain 19:1–19. https://doi.org/10.1007/s10668-019-00501-6

    Article  Google Scholar 

  • Singh VB, Ramanathan AL (2017) Hydrogeochemistry of the Chhota Shigri glacier meltwater, Chandra basin, Himachal Pradesh, India: Solute acquisition processes, dissolved load and chemical weathering rates. Environ Earth Sci 76(5):223. https://doi.org/10.1007/s12665-017-6465-4

  • Singh VB, Ramanathan AL, Pottakkal JG, Kumar M (2014a) Seasonal variation of the solute and suspended sediment load in Gangotri Glacier meltwater, central Himalaya, India. J Asian Earth Sci 79:224–234. https://doi.org/10.1016/j.jseaes.2013.09.010

    Article  Google Scholar 

  • Singh VB, Ramanathan AL, Pottakkal JG, Kumar M (2014b) Hydrogeochemisty of meltwater of the Chaturangi glacier, Garhwal Himalaya, India. Proc Natl Acad Sci India 85(1):187–195. https://doi.org/10.1007/s40010-014-0181-1

    Article  Google Scholar 

  • Singh VB, Ramanathan AL, Pottakkal JG, Sharma P, Linda A, Azam MF, Chatterjee C (2012) Chemical characterisation of meltwater draining from Gangotri glacier, Garhwal Himalaya, India. J Earth Syst Sci 121(3):625–636. https://doi.org/10.1007/s12040-012-01777

    Article  Google Scholar 

  • Singh VB, Ramanathan AL, Sharma P, Pottakkal JG (2015) Dissolved ion chemistry and suspended sediment characteristics of meltwater draining from Chhota Shigri Glacier, Western Himalaya, India. Arab J Geosci 8:281–293. https://doi.org/10.1007/s12517-013-1176-y

    Article  Google Scholar 

  • Sood V, Gusain HS, Gupta S, Taloor AK, Singh S (2020) Detection of snow/ice cover changes using subpixel-based change detection approach over Chhota-Shigri glacier, Western Himalaya, India. Quat Int. https://doi.org/10.1016/j.quaint.2020.05.016

  • Souchez RA, Lemmens MM (1987) Solutes. In: Gurnell AM, Clark MJ (eds) Glacio-fluvial sediment transfer. Wiley, UK, pp 285–303

    Google Scholar 

  • Stern CR, Kligfield R, Schelling D, Virdi NS, Futa K, Peterman ZE, Amini H (1989) The Bhagirathi Leucogranite of the High Himalaya (Garhwal India); Age, Petrogenesis, and tectonic implications. Geol Soc Am Spec Pap 232:33–45

    Google Scholar 

  • Stumm W, Morgan JJ (1981) An introduction emphasizing chemical equilibria in natural waters. In: Stumm W, Morgan JJ (eds) Aquatic chemistry, 2nd edn. Wiley, New York, pp 230–258

    Google Scholar 

  • Taloor AK, Joshi LM, Kotlia BS, Alam A, Kothyari GC, Kandregula RS, Singh AK, Dumka RK (2020a) Tectonic imprints of landscape evolution in the Bhilangana and Mandakini basin, Garhwal Himalaya, India: a geospatial approach. Quat Int. https://doi.org/10.1016/j.quaint.2020.07.021

  • Taloor AK, Kumar V, Singh VK, Singh AK, Kale RV, Sharma R, Khajuria V, Raina G, Kouser B, Chowdhary NH (2020b). Land use land cover dynamics using remote sensing and GIS techniques in Western Doon Valley, Uttarakhand, India. In: Geoecology of landscape dynamics 2020. Springer, Singapore, pp 37–51. https://doi.org/10.1007/978-981-15-2097-6_4

  • Taloor AK, Pir, RA, Adimalla N, Ali S, Manhas DS, Roy S, Singh AK (2020c) Spring water quality and discharge assessment in the Basantar watershed of Jammu Himalaya using geographic information system (GIS) and water quality Index(WQI). Groundw Sust Dev 10:P100364. https://doi.org/10.1016/j.gsd.2020.100364

  • Taloor AK, Ray PK, Jasrotia AS, Kotlia BS, Alam A, Kumar SG, Kumar R, Kumar V, Roy S (2017) Active tectonic deformation along reactivated faults in Binta basin in Kumaun Himalaya of north India: inferences from tectono-geomorphic evaluation. Z Geomorphol 61(2):159–180

    Article  Google Scholar 

  • Tiwari SK, Kumar A, Gupta AK, Verma A, Bhambri R, Sundriyal S, Yadav J (2018) Hydrochemistry of meltwater draining from Dokriani Glacier during early and late ablation season, West Central Himalaya. Himal Geol 39(1):121–132

    Google Scholar 

  • Tranter M, Sharp MJ, Brown GH, Willis IC, Hubbard BP, Nielsen MK, Smart CC, Gordon S, Tulley M, Lamb HR (1997) Variability in the chemical composition of in-situ subglacial meltwaters. Hydrol Proc 11:59–77. https://doi.org/10.1002/(SICI)1099-1085

  • Tranter M, Brown GH, Raiswell R, Sharp MJ, Gurnell AM (1993) A conceptual model of solute acquisition by Alpine glacier meltwaters. J Glaciol 39(133): 573–581. https://doi.org/10.3189/S0022143000016464

  • Valdiya KS (1980) Geology of the Kumaun lesser Himalaya Wadia Institute of Himalayan Geology, Dehradun, pp 291

    Google Scholar 

  • Wadham JL, Hodson AJ, Tranter M, Dowdeswell JA (1998) The hydrochemistry of meltwater draining a polythermal-based, high Arctic glacier, South Svalbard. Hydrol Proc 12:1825–1849. https://doi.org/10.1002/(SICI)10991085(19981015)12:12%3c1825::AIDHYP669%3e3.0.CO;2-R

  • White AF (2002) Determining mineral weathering rates based on solid and solute weathering gradients and velocities: application to biotite weathering in saprolites. Chem Geol 190:69–89. https://doi.org/10.1016/S0009-2541(02)00111-0

  • Yde JC, Knudsen NT, Ole BN (2005) Glacier hydrochemistry, solute provenance, and chemical denudation at a surge-type glacier in Kuanner suit Kuussuat, Disko Island, West Greenland. J Hydrol 300:172–187. https://doi.org/10.1016/j.hydrol.2004.06.008

Download references

Acknowledgements

The authors would like to thank DST, New Delhi, for economic support to carry out the current research. We are also grateful to the Director, G.B. Pant National Institute, Kosi-Katarmal, Almora for extending us the required working facilities in the field and laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Bisht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bisht, H. et al. (2021). Sources of Solute and Hydrochemical Analysis of Gangotri Glacier Meltwater. In: Taloor, A.K., Kotlia, B.S., Kumar, K. (eds) Water, Cryosphere, and Climate Change in the Himalayas. Geography of the Physical Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-67932-3_16

Download citation

Publish with us

Policies and ethics