Skip to main content
Log in

Multiparametric Magnetic Resonance Imaging in Pulmonary Hypertension

  • Cardiac Magnetic Resonance (E Nagel and V Puntmann, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Quantitative magnetic resonance imaging provides a comprehensive and non-invasive assessment of the heart and lungs in patients with suspected pulmonary hypertension with the potential for accurate assessment of disease severity and response to treatment. Magnetic resonance imaging (MRI) can provide detailed reliable information of heart structure and function as the heart responds to elevated right ventricle afterload in patients with progressive pulmonary vascular disease; notably, progressive changes in right ventricle volume and function are of prognostic value independent of established biomarkers. This article reviews the current literature on MRI in pulmonary hypertension and also describes new and exciting developments in imaging of the heart, pulmonary vasculature and lungs, including assessment of myocardial changes with late gadolinium-enhanced imaging and T1 mapping, evaluating changes in the proximal pulmonary vasculature using image-based computational modelling and quantitative assessment of the capillary bed using MRI perfusion analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kiely DG, Elliot CA, Sabroe I, Condliffe R. Pulmonary hypertension: diagnosis and management. BMJ. 2013;346:f2028.

    Article  PubMed  Google Scholar 

  2. Hurdman J, Condliffe R, Elliot CA, Davies C, Hill C, Wild JM, et al. ASPIRE registry: assessing the spectrum of pulmonary hypertension identified at a referral centre. Eur Respir J: Of J Eur Soc Clin Respir Physiol. 2012;39:945–55.

    Article  CAS  Google Scholar 

  3. Swift AJ, Wild JM, Nagle SK, Roldan-Alzate A, Francois CJ, Fain S, et al. Quantitative magnetic resonance imaging of pulmonary hypertension: a practical approach to the current state of the art. J Thorac Imaging. 2014;29:68–79.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Rajaram S, Swift AJ, Condliffe R, Johns C, Elliot CA, Hill C, Davies C, Hurdman J, Sabroe I, Wild JM, Kiely DG. CT features of pulmonary arterial hypertension and its major subtypes: a systematic CT evaluation of 292 patients from the ASPIRE registry. Thorax. 2014.

  5. Bradlow WM, Gibbs JS, Mohiaddin RH. Cardiovascular magnetic resonance in pulmonary hypertension. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2012;14:6.

    Article  Google Scholar 

  6. van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007;28:1250–7.

    Article  PubMed  Google Scholar 

  7. Swift AJ, Rajaram S, Campbell MJ, Hurdman J, Thomas S, Capener D, et al. Prognostic value of cardiovascular magnetic resonance imaging measurements corrected for age and sex in idiopathic pulmonary arterial hypertension. Circ Cardiovasc Imaging. 2014;7:100–6.

    Article  PubMed  Google Scholar 

  8. van de Veerdonk MC, Kind T, Marcus JT, Mauritz GJ, Heymans MW, Bogaard HJ, et al. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol. 2011;58:2511–9. This study shows that changes in RV volume and function in patients with PAH are of greater prognostic significance than traditional prognostic measurements recorded at right heart catheterisation. In particular the authors show that RV function can deteriorate despite a reduction in pulmonary vascular resistance.

    Article  PubMed  Google Scholar 

  9. Benza RL, Gomberg-Maitland M, Miller DP, Frost A, Frantz RP, Foreman AJ, et al. The reveal registry risk score calculator in patients newly diagnosed with pulmonary arterial hypertension. Chest. 2012;141:354–62.

    Article  PubMed  Google Scholar 

  10. Ling Y, Johnson MK, Kiely DG, Condliffe R, Elliot CA, Gibbs JS, et al. Changing demographics, epidemiology, and survival of incident pulmonary arterial hypertension: results from the pulmonary hypertension registry of the United Kingdom and Ireland. Am J Respir Crit Care Med. 2012;186:790–6.

    Article  PubMed  Google Scholar 

  11. Jacobs W, van de Veerdonk MC, Trip P, de Man F, Heymans MW, Marcus JT, Kawut SM, Bogaard HJ, Boonstra A, Vonk Noordegraaf A. The right ventricle explains sex differences in survival in idiopathic pulmonary arterial hypertension. Chest. 2013.

  12. Swift AJ, Capener D, Hammerton C, Thomas SM, Elliot C, Condliffe R, et al. Right ventricular sex differences in patients with idiopathic pulmonary arterial hypertension characterised by magnetic resonance imaging: pair-matched case controlled study. PLoS One. 2015;10, e0127415.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Saba TS, Foster J, Cockburn M, Cowan M, Peacock AJ. Ventricular mass index using magnetic resonance imaging accurately estimates pulmonary artery pressure. Eur Respir J. 2002;20:1519–24.

    Article  CAS  PubMed  Google Scholar 

  14. Hagger D, Condliffe R, Woodhouse N, Elliot CA, Armstrong IJ, Davies C, et al. Ventricular mass index correlates with pulmonary artery pressure and predicts survival in suspected systemic sclerosis-associated pulmonary arterial hypertension. Rheumatology. 2009;48:1137–42.

    Article  PubMed  Google Scholar 

  15. Vogel-Claussen J, Shehata ML, Lossnitzer D, Skrok J, Singh S, Boyce D, et al. Increased right ventricular septomarginal trabeculation mass is a novel marker for pulmonary hypertension: comparison with ventricular mass index and right ventricular mass. Investig Radiol. 2011;46:567–75.

    Article  Google Scholar 

  16. Wilkins MR, Paul GA, Strange JW, Tunariu N, Gin-Sing W, Banya WA, Westwood MA, Stefanidis A, Ng LL, Pennell DJ, Mohiaddin RH, Nihoyannopoulos P, Gibbs JS. Sildenafil versus Endothelin Receptor Antagonist for Pulmonary Hypertension (SERAPH) study. Am J Respir Crit Care Med. 2005;171:1292–1297. This study utilises MRI as an endpoint to measure RV remodelling in patients with PAH. When Sildenafil was added to standard treatment, reductions in RV mass and improvement cardiac function were found.

  17. Bradlow WM, Hughes ML, Keenan NG, Bucciarelli-Ducci C, Assomull R, Gibbs JS, et al. Measuring the heart in pulmonary arterial hypertension (PAH): implications for trial study size. J Magn Reson Imaging: JMRI. 2010;31:117–24.

    Article  PubMed  Google Scholar 

  18. Driessen MM, Baggen VJ, Freling HG, Pieper PG, van Dijk AP, Doevendans PA, Snijder RJ, Post MC, Meijboom FJ, Sieswerda GT, Leiner T, Willems TP. Pressure overloaded right ventricles: a multicenter study on the importance of trabeculae in RV function measured by CMR. Int J Cardiovasc Imaging. 2014;30:599–608. This study shows that an intensity based approach can yield accurate measurement if the RV trabecular component of RV mass in patients with RV pressure overload. This is particularly relevant pulmonary hypertension given difficulty in measuring complex trabeculations.

  19. Altmayer SP, Teeuwen LA, Gorman RC, Han Y. Rv mass measurement at end-systole: improved accuracy, reproducibility, and reduced segmentation time. J Magn Reson Imaging: JMRI. 2015.

  20. Holverda S, Gan CT, Marcus JT, Postmus PE, Boonstra A, Vonk-Noordegraaf A. Impaired stroke volume response to exercise in pulmonary arterial hypertension. J Am Coll Cardiol. 2006;47:1732–3.

    Article  PubMed  Google Scholar 

  21. Manders E, Bogaard HJ, Handoko ML, van de Veerdonk MC, Keogh A, Westerhof N, et al. Contractile dysfunction of left ventricular cardiomyocytes in patients with pulmonary arterial hypertension. J Am Coll Cardiol. 2014;64:28–37. Whilst the majority of studies in PAH concentrate on the RV, this study investigates the contractile function of the LV demonstrating reduced force-generating capacity, normalized to cardiomyocyte cross sectional area in patients with PAH. These changes may be due to prolongued reduction of LV preload.

    Article  CAS  PubMed  Google Scholar 

  22. Abhayaratna WP, Seward JB, Appleton CP, Douglas PS, Oh JK, Tajik AJ, et al. Left atrial size: physiologic determinants and clinical applications. J Am Coll Cardiol. 2006;47:2357–63.

    Article  PubMed  Google Scholar 

  23. Rossi A, Cicoira M, Florea VG, Golia G, Florea ND, Khan AA, et al. Chronic heart failure with preserved left ventricular ejection fraction: diagnostic and prognostic value of left atrial size. Int J Cardiol. 2006;110:386–92.

    Article  PubMed  Google Scholar 

  24. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr: Off Publ Am Soc Echocardiogr. 2015;28:1–39. e14.

    Article  Google Scholar 

  25. Hartiala JJ, Mostbeck GH, Foster E, Fujita N, Dulce MC, Chazouilleres AF, et al. Velocity-encoded cine MRI in the evaluation of left ventricular diastolic function: measurement of mitral valve and pulmonary vein flow velocities and flow volume across the mitral valve. Am Heart J. 1993;125:1054–66.

    Article  CAS  PubMed  Google Scholar 

  26. Rathi VK, Doyle M, Yamrozik J, Williams RB, Caruppannan K, Truman C, et al. Routine evaluation of left ventricular diastolic function by cardiovascular magnetic resonance: a practical approach. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2008;10:36.

    Article  Google Scholar 

  27. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr: J Work Group Echocardiogr Eur Soc Cardiol. 2009;10:165–93.

    Article  Google Scholar 

  28. Kawaji K, Codella NC, Prince MR, Chu CW, Shakoor A, LaBounty TM, et al. Automated segmentation of routine clinical cardiac magnetic resonance imaging for assessment of left ventricular diastolic dysfunction. Circ Cardiovasc imaging. 2009;2:476–84.

    Article  PubMed  Google Scholar 

  29. Okayama S, Nakano T, Uemura S, Fujimoto S, Somekawa S, Watanabe M, et al. Evaluation of left ventricular diastolic function by fractional area change using cine cardiovascular magnetic resonance: a feasibility study. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2013;15:87.

    Article  Google Scholar 

  30. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000;102:1788–94.

    Article  CAS  PubMed  Google Scholar 

  31. D’Souza KA, Mooney DJ, Russell AE, MacIsaac AI, Aylward PE, Prior DL. Abnormal septal motion affects early diastolic velocities at the septal and lateral mitral annulus, and impacts on estimation of the pulmonary capillary wedge pressure. J Am Soc Echocardiogr: Off Publ Am Soc Echocardiogr. 2005;18:445–53.

    Article  Google Scholar 

  32. Rivas-Gotz C, Khoury DS, Manolios M, Rao L, Kopelen HA, Nagueh SF. Time interval between onset of mitral inflow and onset of early diastolic velocity by tissue Doppler: a novel index of left ventricular relaxation: experimental studies and clinical application. J Am Coll Cardiol. 2003;42:1463–70.

    Article  PubMed  Google Scholar 

  33. Paelinck BP, de Roos A, Bax JJ, Bosmans JM, van Der Geest RJ, Dhondt D, et al. Feasibility of tissue magnetic resonance imaging: a pilot study in comparison with tissue Doppler imaging and invasive measurement. J Am Coll Cardiol. 2005;45:1109–16.

    Article  PubMed  Google Scholar 

  34. Wu V, Chyou JY, Chung S, Bhagavatula S, Axel L. Evaluation of diastolic function by three-dimensional volume tracking of the mitral annulus with cardiovascular magnetic resonance: comparison with tissue Doppler imaging. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2014;16:71.

    Article  Google Scholar 

  35. Buss SJ, Krautz B, Schnackenburg B, Abdel-Aty H, Santos MF, Andre F, et al. Classification of diastolic function with phase-contrast cardiac magnetic resonance imaging: validation with echocardiography and age-related reference values. Clin Res Cardiol: Off J Ger Cardiac Soc. 2014;103:441–50.

    Article  Google Scholar 

  36. Garot J. The study of diastole by tagged MRI: are we nearly there yet? Eur Heart J. 2004;25:1376–7.

    Article  PubMed  Google Scholar 

  37. Brandts A, Bertini M, van Dijk EJ, Delgado V, Marsan NA, van der Geest RJ, et al. Left ventricular diastolic function assessment from three-dimensional three-directional velocity-encoded MRI with retrospective valve tracking. J Magn Reson Imaging: JMRI. 2011;33:312–9.

    Article  PubMed  Google Scholar 

  38. Blyth KG, Groenning BA, Martin TN, Foster JE, Mark PB, Dargie HJ, et al. Contrast enhanced-cardiovascular magnetic resonance imaging in patients with pulmonary hypertension. Eur Heart J. 2005;26:1993–9.

    Article  PubMed  Google Scholar 

  39. Sanz J, Dellegrottaglie S, Kariisa M, Sulica R, Poon M, O’Donnell TP, et al. Prevalence and correlates of septal delayed contrast enhancement in patients with pulmonary hypertension. Am J Cardiol. 2007;100:731–5.

    Article  PubMed  Google Scholar 

  40. Swift AJ, Rajaram S, Capener D, Elliot C, Condliffe R, Wild JM, et al. LGE patterns in pulmonary hypertension do not impact overall mortality. J Am Coll Cardiol Img. 2014;7:1209–17.

    Article  Google Scholar 

  41. Dabir D, Child N, Kalra A, Rogers T, Gebker R, Jabbour A, et al. Reference values for healthy human myocardium using a T1 mapping methodology: results from the international T1 multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2014;16:69.

    Article  Google Scholar 

  42. Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. J Am Coll Cardiol Img. 2013;6:475–84.

    Article  Google Scholar 

  43. Garcia-Alvarez A, Garcia-Lunar I, Pereda D, Fernandez-Jimenez R, Sanchez-Gonzalez J, Mirelis JG, et al. Association of myocardial T1-mapping CMR with hemodynamics and RV performance in pulmonary hypertension. J Am Coll Cardiol Img. 2015;8:76–82. This is the first original article to characterise T1 values in an animal model of pulmonary hypertension. Correlations with RV performance where identified.

    Article  Google Scholar 

  44. Devaraj A, Wells AU, Meister MG, Corte TJ, Wort SJ, Hansell DM. Detection of pulmonary hypertension with multidetector ct and echocardiography alone and in combination. Radiology. 2010;254:609–16.

    Article  PubMed  Google Scholar 

  45. Devaraj A, Hansell DM. Computed tomography signs of pulmonary hypertension: old and new observations. Clin Radiol. 2009;64:751–60.

    Article  CAS  PubMed  Google Scholar 

  46. Swift AJ, Rajaram S, Marshall H, Condliffe R, Capener D, Hill C, et al. Black blood MRI has diagnostic and prognostic value in the assessment of patients with pulmonary hypertension. Eur Radiol. 2012;22:695–702.

    Article  PubMed  Google Scholar 

  47. Boerrigter B, Mauritz GJ, Marcus JT, Helderman F, Postmus PE, Westerhof N, Vonk-Noordegraaf A. Progressive dilatation of the main pulmonary artery is a characteristic of pulmonary arterial hypertension and is not related to changes in pressure. Chest. 2010.

  48. Sanz J, Kariisa M, Dellegrottaglie S, Prat-Gonzalez S, Garcia MJ, Fuster V, et al. Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. J Am Coll Cardiol Img. 2009;2:286–95.

    Article  Google Scholar 

  49. Swift AJ, Rajaram S, Condliffe R, Capener D, Hurdman J, Elliot C, et al. Pulmonary artery relative area change detects mild elevations in pulmonary vascular resistance and predicts adverse outcome in pulmonary hypertension. Invest Radiol. 2012;47:571–7.

    Article  PubMed  Google Scholar 

  50. Gan CT, Lankhaar JW, Westerhof N, Marcus JT, Becker A, Twisk JW, et al. Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest. 2007;132:1906–12.

    Article  PubMed  Google Scholar 

  51. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.

    Article  PubMed  Google Scholar 

  52. Reiter G, Reiter U, Kovacs G, Kainz B, Schmidt K, Maier R, et al. Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circ Cardiovasc Imaging. 2008;1:23–30.

    Article  PubMed  Google Scholar 

  53. Reiter U, Reiter G, Kovacs G, Stalder AF, Gulsun MA, Greiser A, Olschewski H, Fuchsjager M. Evaluation of elevated mean pulmonary arterial pressure based on magnetic resonance 4D velocity mapping: comparison of visualization techniques. PloS One. 2013;8:e82212. Using time-resolved 3D PC-MRI data extremely high accuracy for the diagnosis of pulmonary hypertension has been achieved. This approach uses the lifetime of the existence of vortex flow in the main pulmonary artery with a near perfect correlation with PA pressure. These results are promising but require validation at other centres.

  54. Collier GJ, Swift AJ, Capener D, Kiely DG, Condliffe R, Elliot CA, Wild JM. Analysis of flow vortices in the pulmonary artery of healthy normals and patients with PH with 4D flow MRI. ATS. 2013.

  55. Heusch A, Koch JA, Krogmann ON, Korbmacher B, Bourgeois M. Volumetric analysis of the right and left ventricle in a porcine heart model: comparison of three-dimensional echocardiography, magnetic resonance imaging and angiocardiography. Eur J Ultrasound. 1999;9:245–55.

    Article  CAS  PubMed  Google Scholar 

  56. Marrone G, Mamone G, Luca A, Vitulo P, Bertani A, Pilato M, et al. The role of 1.5t cardiac MRI in the diagnosis, prognosis and management of pulmonary arterial hypertension. Int J Cardiovasc Imaging. 2010;26:665–81.

    Article  PubMed  Google Scholar 

  57. Benza R, Biederman R, Murali S, Gupta H. Role of cardiac magnetic resonance imaging in the management of patients with pulmonary arterial hypertension. J Am Coll Cardiol. 2008;52:1683–92.

    Article  PubMed  Google Scholar 

  58. Mooij CF, de Wit CJ, Graham DA, Powell AJ, Geva T. Reproducibility of MRI measurements of right ventricular size and function in patients with normal and dilated ventricles. J Magn Reson Imaging: JMRI. 2008;28:67–73.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Kondo C, Caputo GR, Semelka R, Foster E, Shimakawa A, Higgins CB. Right and left ventricular stroke volume measurements with velocity-encoded cine MR imaging: in vitro and in vivo validation. AJR Am J Roentgenol. 1991;157:9–16.

    Article  CAS  PubMed  Google Scholar 

  60. Gatehouse PD, Keegan J, Crowe LA, Masood S, Mohiaddin RH, Kreitner KF, et al. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol. 2005;15:2172–84.

    Article  PubMed  Google Scholar 

  61. Ley S, Mereles D, Puderbach M, Gruenig E, Schock H, Eichinger M, et al. Value of MR phase-contrast flow measurements for functional assessment of pulmonary arterial hypertension. Eur Radiol. 2007;17:1892–7.

    Article  PubMed  Google Scholar 

  62. Sanz J, Kuschnir P, Rius T, Salguero R, Sulica R, Einstein AJ, et al. Pulmonary arterial hypertension: noninvasive detection with phase-contrast MR imaging. Radiology. 2007;243:70–9.

    Article  PubMed  Google Scholar 

  63. Mauritz GJ, Marcus JT, Boonstra A, Postmus PE, Westerhof N, Vonk-Noordegraaf A. Non-invasive stroke volume assessment in patients with pulmonary arterial hypertension: left-sided data mandatory. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2008;10:51.

    Article  Google Scholar 

  64. Mousseaux E, Tasu JP, Jolivet O, Simonneau G, Bittoun J, Gaux JC. Pulmonary arterial resistance: noninvasive measurement with indexes of pulmonary flow estimated at velocity-encoded MR imaging—preliminary experience. Radiology. 1999;212:896–902.

    Article  CAS  PubMed  Google Scholar 

  65. Helderman F, Mauritz GJ, Andringa KE, Vonk-Noordegraaf A, Marcus JT. Early onset of retrograde flow in the main pulmonary artery is a characteristic of pulmonary arterial hypertension. J Magn Reson Imaging: JMRI. 2011;33:1362–8.

    Article  PubMed  Google Scholar 

  66. Barker AJ, Roldan-Alzate A, Entezari P, Shah SJ, Chesler NC, Wieben O, Markl M, Francois CJ. Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial hypertension: results from two institutions. Magn Reson Med: Off J Soc Magn Reson Med / Soc Magn Reson Med. 2014.

  67. Riedel M, Stanek V, Widimsky J, Prerovsky I. Longterm follow-up of patients with pulmonary thromboembolism. Late prognosis and evolution of hemodynamic and respiratory data. Chest. 1982;81:151–8.

    Article  CAS  PubMed  Google Scholar 

  68. Ohno Y, Koyama H, Yoshikawa T, Nishio M, Matsumoto S, Matsumoto K, et al. Contrast-enhanced multidetector-row computed tomography vs. time-resolved magnetic resonance angiography vs. contrast-enhanced perfusion MRI: assessment of treatment response by patients with inoperable chronic thromboembolic pulmonary hypertension. J Magn Reson Imaging: JMRI. 2012;36:612–23.

    Article  PubMed  Google Scholar 

  69. Wild JM, Marshall H, Bock M, Schad LR, Jakob PM, Puderbach M, et al. MRI of the lung (1/3): methods. Insights Imaging. 2012;3:345–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. Sense: sensitivity encoding for fast MRI. Magn Reson Med: Off J Soc Magn Reson Med / Soc Magn Reson Med. 1999;42:952–62.

    Article  CAS  Google Scholar 

  71. Shors SM, Cotts WG, Pavlovic-Surjancev B, Francois CJ, Gheorghiade M, Finn JP. Heart failure: evaluation of cardiopulmonary transit times with time-resolved MR angiography. Radiology. 2003;229:743–8.

    Article  PubMed  Google Scholar 

  72. Muller HM, Tripolt MB, Rehak PH, Groell R, Rienmuller R, Tscheliessnigg KH. Noninvasive measurement of pulmonary vascular resistances by assessment of cardiac output and pulmonary transit time. Investig Radiol. 2000;35:727–31.

    Article  CAS  Google Scholar 

  73. Lakoma A, Tuite D, Sheehan J, Weale P, Carr JC. Measurement of pulmonary circulation parameters using time-resolved MR angiography in patients after Ross procedure. AJR Am J Roentgenol. 2010;194:912–9.

    Article  PubMed  Google Scholar 

  74. Ley S, Mereles D, Risse F, Grunig E, Ley-Zaporozhan J, Tecer Z, et al. Quantitative 3D pulmonary MR-perfusion in patients with pulmonary arterial hypertension: correlation with invasive pressure measurements. Eur J Radiol. 2007;61:251–5.

    Article  PubMed  Google Scholar 

  75. Ohno Y, Koyama H, Nogami M, Takenaka D, Matsumoto S, Onishi Y, et al. Dynamic perfusion MRI: capability for evaluation of disease severity and progression of pulmonary arterial hypertension in patients with connective tissue disease. J Magn Reson Imaging: JMRI. 2008;28:887–99.

    Article  PubMed  Google Scholar 

  76. Sodani G, Sergiacomi G, Orlando A, Albani E, Romagnoli A, Squillaci E, et al. Perfusion MRI of the lung: preliminary results in twenty healthy volunteers. Radiol Med. 2002;103:45–54.

    PubMed  Google Scholar 

  77. Baek HK, Park TH, Park JS, Seo JM, Park SY, Kim BG, et al. Segmental tissue Doppler image-derived tei index in patients with regional wall motion abnormalities. Korean Circ J. 2010;40:114–8.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Jeong HJ, Vakil P, Sheehan JJ, Shah SJ, Cuttica M, Carr JC, et al. Time-resolved magnetic resonance angiography: evaluation of intrapulmonary circulation parameters in pulmonary arterial hypertension. J Magn Reson Imaging: JMRI. 2011;33:225–31.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Rajaram S, Swift AJ, Telfer A, Hurdman J, Marshall H, Lorenz E, Capener D, Davies C, Hill C, Elliot C, Condliffe R, Wild JM, Kiely DG. 3D contrast-enhanced lung perfusion MRI is an effective screening tool for chronic thromboembolic pulmonary hypertension: results from the ASPIRE registry. Thorax. 2013.

  80. Ohno Y, Hatabu H, Murase K, Higashino T, Nogami M, Yoshikawa T, et al. Primary pulmonary hypertension: 3D dynamic perfusion MRI for quantitative analysis of regional pulmonary perfusion. AJR Am J Roentgenol. 2007;188:48–56.

    Article  PubMed  Google Scholar 

  81. Sergiacomi G, Bolacchi F, Cadioli M, Angeli ML, Fucci F, Crusco S, et al. Combined pulmonary fibrosis and emphysema: 3D time-resolved MR angiographic evaluation of pulmonary arterial mean transit time and time to peak enhancement. Radiology. 2010;254:601–8.

    Article  PubMed  Google Scholar 

  82. Skrok J, Shehata ML, Mathai S, Girgis RE, Zaiman A, Mudd JO, Boyce D, Lechtzin N, Lima JA, Bluemke DA, Hassoun PM, Vogel-Claussen J. Pulmonary arterial hypertension: MR imaging-derived first-pass bolus kinetic parameters are biomarkers for pulmonary hemodynamics, cardiac function, and ventricular remodeling. Radiology. 2012.

  83. Swift AJ, Telfer A, Rajaram S, Condliffe R, Marshall H, Capener D, et al. Dynamic contrast-enhanced magnetic resonance imaging in patients with pulmonary arterial hypertension. Pulm Circ. 2014;4:61–70.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Marshall H, Kiely DG, Parra-Robles J, Capener D, Deppe MH, van Beek EJ, et al. Magnetic resonance imaging of ventilation and perfusion changes in response to pulmonary endarterectomy in chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med. 2014;190:e18–9.

    Article  PubMed  Google Scholar 

  85. Stewart NJ, Leung G, Norquay G, Marshall H, Parra-Robles J, Murphy PS, Schulte RF, Elliot C, Condliffe R, Griffiths PD, Kiely DG, Whyte MK, Wolber J, Wild JM. Experimental validation of the hyperpolarized Xe chemical shift saturation recovery technique in healthy volunteers and subjects with interstitial lung disease. Magn Reson Med: Off J Soc Magn Reson Med / Soc Magn Reson Med. 2014.

  86. Peacock AJ, Crawley S, McLure L, Blyth K, Vizza CD, Poscia R, et al. Changes in right ventricular function measured by cardiac magnetic resonance imaging in patients receiving pulmonary arterial hypertension-targeted therapy: the EURO-MR study. Circ Cardiovasc Imaging. 2014;7:107–14.

    Article  PubMed  Google Scholar 

  87. Berman M, Gopalan D, Sharples L, Screaton N, Maccan C, Sheares K, et al. Right ventricular reverse remodeling after pulmonary endarterectomy: magnetic resonance imaging and clinical and right heart catheterization assessment. Pulm Circ. 2014;4:36–44.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Surie S, van der Plas MN, Marcus JT, Kind T, Kloek JJ, Vonk-Noordegraaf A, et al. Effect of pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension on stroke volume response to exercise. Am J Cardiol. 2014;114:136–40.

    Article  PubMed  Google Scholar 

  89. Surie S, Reesink HJ, Marcus JT, van der Plas MN, Kloek JJ, Vonk-Noordegraaf A, et al. Bosentan treatment is associated with improvement of right ventricular function and remodeling in chronic thromboembolic pulmonary hypertension. Clin Cardiol. 2013;36:698–703.

    Article  PubMed  Google Scholar 

  90. Lungu A, Wild JM, Capener D, Kiely DG, Swift AJ, Hose DR. MRI model-based non-invasive differential diagnosis in pulmonary hypertension. J Biomech. 2014;47:2941–2947. This study demonstrates that using computational modelling approach the ratio of reflected-to-total wave power and the electrical analogue parameter of resistance can be derived from dynamic MRI measurements of flow and pulsatility in the PA. These metrics have the capability of diagnostic pulmonary hypertension and stratifying disease severity.

  91. Kreitner KF, Wirth GM, Krummenauer F, Weber S, Pitton MB, Schneider J, et al. Noninvasive assessment of pulmonary hemodynamics in patients with chronic thromboembolic pulmonary hypertension by high temporal resolution phase-contrast MRI: correlation with simultaneous invasive pressure recordings. Circ Cardiovasc Imaging. 2013;6:722–9.

    Article  PubMed  Google Scholar 

  92. Roeleveld RJ, Marcus JT, Faes TJ, Gan TJ, Boonstra A, Postmus PE, et al. Interventricular septal configuration at mr imaging and pulmonary arterial pressure in pulmonary hypertension. Radiology. 2005;234:710–7.

    Article  PubMed  Google Scholar 

  93. Dellegrottaglie S, Sanz J, Poon M, Viles-Gonzalez JF, Sulica R, Goyenechea M, et al. Pulmonary hypertension: accuracy of detection with left ventricular septal-to-free wall curvature ratio measured at cardiac MR. Radiology. 2007;243:63–9.

    Article  PubMed  Google Scholar 

  94. Swift AJ, Rajaram S, Hurdman J, Hill C, Davies C, Sproson TW, et al. Noninvasive estimation of pa pressure, flow, and resistance with cmr imaging: derivation and prospective validation study from the ASPIRE registry. J Am Coll Cardiol Img. 2013;6(10):1036–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Swift.

Ethics declarations

Conflict of Interest

Andrew J. Swift, Laura C. Saunders, Tom Sproson, Guilhem J. Collier, Helen Marshall and Jim M. Wild declare that they have no conflict of interest.

Nehal Hussain reports grants from Actelion.

David G. Kiely reports grants and personal fees from Actelion, grants and personal fees from Bayer, and personal fees from GSK.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiac Magnetic Resonance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swift, A.J., Saunders, L.C., Sproson, T. et al. Multiparametric Magnetic Resonance Imaging in Pulmonary Hypertension. Curr Cardiovasc Imaging Rep 8, 45 (2015). https://doi.org/10.1007/s12410-015-9360-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-015-9360-y

Keywords

Navigation