Skip to main content
Log in

Advanced imaging in pulmonary hypertension: emerging techniques and applications

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Pulmonary hypertension (PH) is a pathophysiological disorder defined by an increase in pulmonary arterial pressure which can occur in multiple clinical conditions. Irrespective of etiology, PH entails a negative impact on exercise capacity and quality of life, and is associated with high mortality particularly in pulmonary arterial hypertension. Noninvasive imaging techniques play an important role in suggesting the presence of PH, providing noninvasive pulmonary pressure measurements, classifying the group of PH, identifying a possibly underlying disease, providing prognostic information and assessing response to treatment. While echocardiography, computed tomography (CT) and ventilation/perfusion scans are an integral part of routine work-up of patients with suspected PH according to current guidelines and across centers, innovative new techniques and applications in the field of PH such as 3D echocardiography, dual-energy CT, 4D flow magnetic resonance imaging (MRI), T1 and extracellular volume fraction mapping, non-contrast-enhanced MRI sequences for perfusion and ventilation assessment, and molecular-targeted positron emission tomography are emerging. This review discusses advanced and emerging imaging techniques in diagnosis, prognostic evaluation and follow-up of patients with PH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

mPAP:

Mean pulmonary arterial pressure

CT:

Computed tomography

CTEPH:

Chronic thromboembolic pulmonary hypertension

CTPA:

Computed tomography pulmonary angiography

DECT:

Dual-energy computed tomography

ECV:

Myocardial extracellular volume

FD:

Fourier decomposition

FDG:

18F-fluorodeoxyglucose

LV:

Left ventricle

MRA:

Magnetic resonance angiography

MRI:

Magnetic resonance imaging

PAH:

Pulmonary arterial hypertension

PET:

Positron emission tomography

PH:

Pulmonary hypertension

PVR:

Pulmonary vascular resistance

RHC:

Right heart catheterization

RV:

Right ventricle

SPECT:

Single photon emission computed tomography

SUV:

Standardized uptake value

VMI:

Ventricular mass index

References

  1. Galiè N, Humbert M, Vachiery J-L et al (2015) ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J 46(4):903–975

    Article  CAS  PubMed  Google Scholar 

  2. D’Alonzo GE, Barst RJ, Ayres SM et al (1991) Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 115(5):343–349

    Article  PubMed  Google Scholar 

  3. Tuder RM, Marecki JC, Richter A, Fijalkowska I, Flores S (2007) Pathology of pulmonary hypertension. Clin Chest Med 28(1):23–42 vii

    Article  PubMed  PubMed Central  Google Scholar 

  4. van Riel ACMJ, Opotowsky AR, Santos M et al (2017) Accuracy of echocardiography to estimate pulmonary artery pressures with exercise: a simultaneous invasive-noninvasive comparison. Circ Cardiovasc Imaging 10(4):e005711

    PubMed  PubMed Central  Google Scholar 

  5. Coghlan JG, Denton CP, Grünig E et al (2014) Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study. Ann Rheum Dis 73(7):1340–1349

    Article  PubMed  Google Scholar 

  6. Marra AM, Egenlauf B, Ehlken N et al (2015) Change of right heart size and function by long-term therapy with riociguat in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Int J Cardiol 195:19–26

    Article  PubMed  Google Scholar 

  7. van de Veerdonk MC, Marcus JT, Westerhof N et al (2015) Signs of right ventricular deterioration in clinically stable patients with pulmonary arterial hypertension. Chest 147(4):1063–1071

    Article  PubMed  Google Scholar 

  8. Batal O, Dardari Z, Costabile C, Gorcsan J, Arena VC, Mathier MA (2015) Prognostic value of pericardial effusion on serial echocardiograms in pulmonary arterial hypertension. Echocardiography 32(10):1471–1476

    Article  PubMed  Google Scholar 

  9. Kylhammar D, Kjellström B, Hjalmarsson C et al (2017) A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension. Eur Heart J. https://doi.org/10.1093/eurheartj/ehx257

    Article  Google Scholar 

  10. Hoeper MM, Kramer T, Pan Z et al (2017) Mortality in pulmonary arterial hypertension: prediction by the 2015 European pulmonary hypertension guidelines risk stratification model. Eur Respir J 50(2):1700740

    Article  CAS  PubMed  Google Scholar 

  11. Grünig E, Tiede H, Enyimayew EO et al (2013) Assessment and prognostic relevance of right ventricular contractile reserve in patients with severe pulmonary hypertension. Circulation 128(18):2005–2015

    Article  PubMed  Google Scholar 

  12. Ferrara F, Gargani L, Ostenfeld E et al (2017) Imaging the right heart pulmonary circulation unit: insights from advanced ultrasound techniques. Echocardiography 34(8):1216–1231

    Article  PubMed  Google Scholar 

  13. Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23(7):685–713 quiz 786–788

    Article  PubMed  Google Scholar 

  14. Bhave NM, Patel AR, Weinert L et al (2013) Three-dimensional modeling of the right ventricle from two-dimensional transthoracic echocardiographic images: utility of knowledge-based reconstruction in pulmonary arterial hypertension. J Am Soc Echocardiogr 26(8):860–867

    Article  PubMed  Google Scholar 

  15. Grapsa J, O’Regan DP, Pavlopoulos H, Durighel G, Dawson D, Nihoyannopoulos P (2010) Right ventricular remodelling in pulmonary arterial hypertension with three-dimensional echocardiography: comparison with cardiac magnetic resonance imaging. Eur J Echocardiogr 11(1):64–73

    Article  PubMed  Google Scholar 

  16. Li Y, Wang Y, Zhai Z, Guo X, Yang Y, Lu X (2015) Real-time three-dimensional echocardiography to assess right ventricle function in patients with pulmonary hypertension. PLoS ONE 10(6):e0129557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bossone E, Ferrara F, Grünig E (2015) Echocardiography in pulmonary hypertension. Curr Opin Cardiol 30(6):574–586

    Article  PubMed  Google Scholar 

  18. Leibundgut G, Rohner A, Grize L et al (2010) Dynamic assessment of right ventricular volumes and function by real-time three-dimensional echocardiography: a comparison study with magnetic resonance imaging in 100 adult patients. J Am Soc Echocardiogr 23(2):116–126

    Article  PubMed  Google Scholar 

  19. Gerges M, Gerges C, Lang IM (2015) Advanced imaging tools rather than hemodynamics should be the primary approach for diagnosing, following, and managing pulmonary arterial hypertension. Can J Cardiol 31(4):521–528

    Article  PubMed  Google Scholar 

  20. Grünig E, Peacock AJ (2015) Imaging the heart in pulmonary hypertension: an update. Eur Respir Rev 24(138):653–664

    Article  PubMed  Google Scholar 

  21. D’Alto M, Romeo E, Argiento P et al (2015) Pulmonary arterial hypertension: the key role of echocardiography. Echocardiography 32(Suppl 1):S23–S37

    Article  PubMed  Google Scholar 

  22. Haeck MLA, Scherptong RWC, Marsan NA et al (2012) Prognostic value of right ventricular longitudinal peak systolic strain in patients with pulmonary hypertension. Circ Cardiovasc Imaging 5(5):628–636

    Article  PubMed  Google Scholar 

  23. Sachdev A, Villarraga HR, Frantz RP et al (2011) Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest 139(6):1299–1309

    Article  PubMed  Google Scholar 

  24. Greiner S, André F, Heimisch M et al (2013) Non-invasive quantification of right ventricular systolic function by echocardiography: a new semi-automated approach. Clin Res Cardiol 102(3):229–235

    Article  PubMed  Google Scholar 

  25. Vitarelli A, Mangieri E, Terzano C et al (2015) Three-dimensional echocardiography and 2D-3D speckle-tracking imaging in chronic pulmonary hypertension: diagnostic accuracy in detecting hemodynamic signs of right ventricular (RV) failure. J Am Heart Assoc 4(3):e001584

    Article  PubMed  PubMed Central  Google Scholar 

  26. Truong QA, Massaro JM, Rogers IS et al (2012) Reference values for normal pulmonary artery dimensions by noncontrast cardiac computed tomography: the Framingham Heart Study. Circ Cardiovasc Imaging 5(1):147–154

    Article  PubMed  Google Scholar 

  27. Shen Y, Wan C, Tian P et al (2014) CT-base pulmonary artery measurement in the detection of pulmonary hypertension: a meta-analysis and systematic review. Medicine (Baltimore) 93(27):e256

    Article  Google Scholar 

  28. Tan RT, Kuzo R, Goodman LR, Siegel R, Haasler GB, Presberg KW (1998) Utility of CT scan evaluation for predicting pulmonary hypertension in patients with parenchymal lung disease. Medical College of Wisconsin Lung Transplant Group. Chest 113(5):1250–1256

    Article  CAS  PubMed  Google Scholar 

  29. Rajaram S, Swift AJ, Capener D et al (2012) Comparison of the diagnostic utility of cardiac magnetic resonance imaging, computed tomography, and echocardiography in assessment of suspected pulmonary arterial hypertension in patients with connective tissue disease. J Rheumatol 39(6):1265–1274

    Article  PubMed  Google Scholar 

  30. Devaraj A, Wells AU, Meister MG, Corte TJ, Wort SJ, Hansell DM (2010) Detection of pulmonary hypertension with multidetector CT and echocardiography alone and in combination. Radiology 254(2):609–616

    Article  PubMed  Google Scholar 

  31. Tanabe Y, Landeras L, Ghandour A, Partovi S, Rajiah P (2018) State-of-the-art pulmonary arterial imaging—part 1. VASA 47:345–359

    Article  PubMed  Google Scholar 

  32. Goerne H, Chaturvedi A, Partovi S, Rajiah P (2018) State-of-the-art pulmonary arterial imaging—part 2. VASA 47:361–375

    Article  PubMed  Google Scholar 

  33. Biesdorf A, Rohr K, Feng D et al (2012) Segmentation and quantification of the aortic arch using joint 3D model-based segmentation and elastic image registration. Med Image Anal 16(6):1187–1201

    Article  PubMed  Google Scholar 

  34. Linguraru MG, Pura JA, Van Uitert RL et al (2010) Segmentation and quantification of pulmonary artery for noninvasive CT assessment of sickle cell secondary pulmonary hypertension. Med Phys 37(4):1522–1532

    Article  PubMed  PubMed Central  Google Scholar 

  35. Froelich JJ, Koenig H, Knaak L, Krass S, Klose KJ (2008) Relationship between pulmonary artery volumes at computed tomography and pulmonary artery pressures in patients with- and without pulmonary hypertension. Eur J Radiol 67(3):466–471

    Article  PubMed  Google Scholar 

  36. Melzig C, Wörz S, Egenlauf B et al (2017) B-0570 - Non-invasive estimation of mean pulmonary arterial pressure in suspected pulmonary hypertension based on automated 3D volumetry of pulmonary CT angiography. SS 704 - Pulmonary vessels and perfusion, European Congress of Radiology, Vienna

  37. Jivraj K, Bedayat A, Sung YK et al (2017) Left atrium maximal axial cross-sectional area is a specific computed tomographic imaging biomarker of World Health Organization Group 2 pulmonary hypertension. J Thorac Imaging 32(2):121–126

    Article  PubMed  Google Scholar 

  38. Currie BJ, Johns C, Chin M et al (2018) CT derived left atrial size identifies left heart disease in suspected pulmonary hypertension: derivation and validation of predictive thresholds. Int J Cardiol 260:172–177

    Article  PubMed  PubMed Central  Google Scholar 

  39. Aviram G, Rozenbaum Z, Ziv-Baran T et al (2017) Identification of pulmonary hypertension caused by left-sided heart disease (World Health Organization Group 2) based on cardiac chamber volumes derived from chest CT imaging. Chest 152(4):792–799

    Article  PubMed  Google Scholar 

  40. Nakazawa T, Watanabe Y, Hori Y et al (2011) Lung perfused blood volume images with dual-energy computed tomography for chronic thromboembolic pulmonary hypertension: correlation to scintigraphy with single-photon emission computed tomography. J Comput Assist Tomogr 35(5):590–595

    Article  PubMed  Google Scholar 

  41. Hachulla A-L, Lador F, Soccal PM, Montet X, Beghetti M (2016) Dual-energy computed tomographic imaging of pulmonary hypertension. Swiss Med Wkly 146:w14328

    PubMed  Google Scholar 

  42. Koike H, Sueyoshi E, Sakamoto I, Uetani M, Nakata T, Maemura K (2018) Comparative clinical and predictive value of lung perfusion blood volume CT, lung perfusion SPECT and catheter pulmonary angiography images in patients with chronic thromboembolic pulmonary hypertension before and after balloon pulmonary angioplasty. Eur Radiol. https://doi.org/10.1007/s00330-018-5501-4

    Article  PubMed  Google Scholar 

  43. Ameli-Renani S, Ramsay L, Bacon JL et al (2014) Dual-energy computed tomography in the assessment of vascular and parenchymal enhancement in suspected pulmonary hypertension. J Thorac Imaging 29(2):98–106

    Article  PubMed  Google Scholar 

  44. Leithner D, Wichmann JL, Vogl TJ et al (2017) Virtual monoenergetic imaging and iodine perfusion maps improve diagnostic accuracy of dual-energy computed tomography pulmonary angiography with suboptimal contrast attenuation. Invest Radiol 52(11):659–665

    Article  PubMed  Google Scholar 

  45. McLure LER, Peacock AJ (2009) Cardiac magnetic resonance imaging for the assessment of the heart and pulmonary circulation in pulmonary hypertension. Eur Respir J 33(6):1454–1466

    Article  CAS  PubMed  Google Scholar 

  46. Grothues F, Smith GC, Moon JCC et al (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90(1):29–34

    Article  PubMed  Google Scholar 

  47. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER et al (2015) Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 17:29

    Article  PubMed  PubMed Central  Google Scholar 

  48. Swift AJ, Capener D, Johns C et al (2017) Magnetic resonance imaging in the prognostic evaluation of patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 196(2):228–239

    Article  PubMed  PubMed Central  Google Scholar 

  49. van Wolferen SA, Marcus JT, Boonstra A et al (2007) Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 28(10):1250–1257

    Article  PubMed  Google Scholar 

  50. Peacock AJ, Crawley S, McLure L et al (2014) Changes in right ventricular function measured by cardiac magnetic resonance imaging in patients receiving pulmonary arterial hypertension-targeted therapy: the EURO-MR study. Circ Cardiovasc Imaging 7(1):107–114

    Article  PubMed  Google Scholar 

  51. Freed BH, Collins JD, François CJ et al (2016) MR and CT imaging for the evaluation of pulmonary hypertension. JACC Cardiovasc Imaging 9(6):715–732

    Article  PubMed  PubMed Central  Google Scholar 

  52. Roeleveld RJ, Marcus JT, Faes TJC et al (2005) Interventricular septal configuration at mr imaging and pulmonary arterial pressure in pulmonary hypertension. Radiology 234(3):710–717

    Article  PubMed  Google Scholar 

  53. Swift AJ, Rajaram S, Hurdman J et al (2013) Noninvasive estimation of PA pressure, flow, and resistance with CMR imaging: derivation and prospective validation study from the ASPIRE registry. JACC Cardiovasc Imaging 6(10):1036–1047

    Article  PubMed  Google Scholar 

  54. Johns CS, Rajaram S, Capener DA et al (2018) Non-invasive methods for estimating mPAP in COPD using cardiovascular magnetic resonance imaging. Eur Radiol 28(4):1438–1448

    Article  CAS  PubMed  Google Scholar 

  55. Shehata ML, Cheng S, Osman NF, Bluemke DA, Lima JAC (2009) Myocardial tissue tagging with cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11:55

    Article  PubMed  PubMed Central  Google Scholar 

  56. Shehata ML, Basha TA, Tantawy WH et al (2010) Real-time single-heartbeat fast strain-encoded imaging of right ventricular regional function: normal versus chronic pulmonary hypertension. Magn Reson Med 64(1):98–106

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shehata ML, Harouni AA, Skrok J et al (2013) Regional and global biventricular function in pulmonary arterial hypertension: a cardiac MR imaging study. Radiology 266(1):114–122

    Article  PubMed  PubMed Central  Google Scholar 

  58. Maschke SK, Schoenfeld CO, Kaireit TF et al (2018) MRI-derived regional biventricular function in patients with chronic thromboembolic pulmonary hypertension before and after pulmonary endarterectomy. Acad Radiol. https://doi.org/10.1016/j.acra.2018.04.002

    Article  PubMed  Google Scholar 

  59. Barker AJ, Roldán-Alzate A, Entezari P et al (2015) Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial hypertension: results from two institutions. Magn Reson Med 73(5):1904–1913

    Article  PubMed  Google Scholar 

  60. Delles M, Rengier F, Azad Y-J et al (2015) Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI. Proc SPIE 9417:94172G

    Article  Google Scholar 

  61. Rengier F, Delles M, Eichhorn J et al (2015) Noninvasive 4D pressure difference mapping derived from 4D flow MRI in patients with repaired aortic coarctation: comparison with young healthy volunteers. Int J Cardiovasc Imaging 31(4):823–830

    Article  PubMed  Google Scholar 

  62. Reiter G, Reiter U, Kovacs G, Olschewski H, Fuchsjäger M (2015) Blood flow vortices along the main pulmonary artery measured with MR imaging for diagnosis of pulmonary hypertension. Radiology 275(1):71–79

    Article  PubMed  Google Scholar 

  63. Rengier F, Geisbüsch P, Schoenhagen P et al (2014) State-of-the-art aortic imaging: part II—applications in transcatheter aortic valve replacement and endovascular aortic aneurysm repair. VASA 43(1):6–26

    Article  PubMed  Google Scholar 

  64. Tang BT, Pickard SS, Chan FP, Tsao PS, Taylor CA, Feinstein JA (2012) Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: an image-based, computational fluid dynamics study. Pulm Circ 2(4):470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kheyfets VO, Rios L, Smith T et al (2015) Patient-specific computational modeling of blood flow in the pulmonary arterial circulation. Comput Methods Progr Biomed 120(2):88–101

    Article  Google Scholar 

  66. Vogel-Claussen J, Rochitte CE, Wu KC et al (2006) Delayed enhancement MR imaging: utility in myocardial assessment. Radiographics 26(3):795–810

    Article  PubMed  Google Scholar 

  67. Shehata ML, Lossnitzer D, Skrok J et al (2011) Myocardial delayed enhancement in pulmonary hypertension: pulmonary hemodynamics, right ventricular function, and remodeling. AJR Am J Roentgenol 196(1):87–94

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bessa LGP, Junqueira FP, Bandeira MLDS et al (2013) Pulmonary arterial hypertension: use of delayed contrast-enhanced cardiovascular magnetic resonance in risk assessment. Arq Bras Cardiol 101(4):336–343

    PubMed  PubMed Central  Google Scholar 

  69. Junqueira FP, Macedo R, Coutinho AC et al (2009) Myocardial delayed enhancement in patients with pulmonary hypertension and right ventricular failure: evaluation by cardiac MRI. Br J Radiol 82(982):821–826

    Article  CAS  PubMed  Google Scholar 

  70. Sanz J, Dellegrottaglie S, Kariisa M et al (2007) Prevalence and correlates of septal delayed contrast enhancement in patients with pulmonary hypertension. Am J Cardiol 100(4):731–735

    Article  PubMed  Google Scholar 

  71. McCann GP, Gan CT, Beek AM, Niessen HWM, Vonk Noordegraaf A, van Rossum AC (2007) Extent of MRI delayed enhancement of myocardial mass is related to right ventricular dysfunction in pulmonary artery hypertension. AJR Am J Roentgenol 188(2):349–355

    Article  PubMed  Google Scholar 

  72. McLaughlin VV, Sitbon O, Badesch DB et al (2005) Survival with first-line bosentan in patients with primary pulmonary hypertension. Eur Respir J 25(2):244–249

    Article  CAS  PubMed  Google Scholar 

  73. Messroghli DR, Moon JC, Ferreira VM et al (2017) Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 19(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  74. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP (2004) Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52(1):141–146

    Article  PubMed  Google Scholar 

  75. Messroghli DR, Walters K, Plein S et al (2007) Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction. Magn Reson Med 58(1):34–40

    Article  PubMed  Google Scholar 

  76. Mehta BB, Chen X, Bilchick KC, Salerno M, Epstein FH (2015) Accelerated and navigator-gated look-locker imaging for cardiac T1 estimation (ANGIE): development and application to T1 mapping of the right ventricle. Magn Reson Med 73(1):150–160

    Article  PubMed  Google Scholar 

  77. Mehta BB, Auger DA, Gonzalez JA et al (2015) Detection of elevated right ventricular extracellular volume in pulmonary hypertension using accelerated and navigator-gated look-locker imaging for cardiac T1 estimation (ANGIE) cardiovascular magnetic resonance. J Cardiovasc Magn Reson 17:110

    Article  PubMed  PubMed Central  Google Scholar 

  78. Roller FC, Wiedenroth C, Breithecker A et al (2017) Native T1 mapping and extracellular volume fraction measurement for assessment of right ventricular insertion point and septal fibrosis in chronic thromboembolic pulmonary hypertension. Eur Radiol 27(5):1980–1991

    Article  PubMed  Google Scholar 

  79. García-Álvarez A, García-Lunar I, Pereda D et al (2015) Association of myocardial T1-mapping CMR with hemodynamics and RV performance in pulmonary hypertension. JACC Cardiovasc Imaging 8(1):76–82

    Article  PubMed  Google Scholar 

  80. Partovi S, Aschwanden M, Staub D et al (2011) Gadofosveset enhanced MR phlebography for detecting pelvic and deep vein leg thrombosis. VASA 40(4):315–319

    Article  CAS  PubMed  Google Scholar 

  81. Stein PD, Chenevert TL, Fowler SE et al (2010) Gadolinium-enhanced magnetic resonance angiography for pulmonary embolism: a multicenter prospective study (PIOPED III). Ann Intern Med 152(7):434–443 W142–W143

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sostman HD, Jablonski KA, Woodard PK et al (2012) Factors in the technical quality of gadolinium enhanced magnetic resonance angiography for pulmonary embolism in PIOPED III. Int J Cardiovasc Imaging 28(2):303–312

    Article  PubMed  Google Scholar 

  83. Pengo V, Lensing AWA, Prins MH et al (2004) Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med 350(22):2257–2264

    Article  CAS  PubMed  Google Scholar 

  84. Olsson KM, Meyer B, Hinrichs J, Vogel-Claussen J, Hoeper MM, Cebotari S (2014) Chronic thromboembolic pulmonary hypertension. Dtsch Arztebl Int 111(50):856–862

    PubMed  PubMed Central  Google Scholar 

  85. Ohno Y, Koyama H, Yoshikawa T et al (2012) Contrast-enhanced multidetector-row computed tomography vs. time-resolved magnetic resonance angiography vs. contrast-enhanced perfusion MRI: assessment of treatment response by patients with inoperable chronic thromboembolic pulmonary hypertension. J Magn Reson Imaging 36(3):612–623

    Article  PubMed  Google Scholar 

  86. Sourbron S, Luypaert R, Morhard D, Seelos K, Reiser M, Peller M (2007) Deconvolution of bolus-tracking data: a comparison of discretization methods. Phys Med Biol 52(22):6761–6778

    Article  CAS  PubMed  Google Scholar 

  87. Hueper K, Parikh MA, Prince MR et al (2013) Quantitative and semiquantitative measures of regional pulmonary microvascular perfusion by magnetic resonance imaging and their relationships to global lung perfusion and lung diffusing capacity: the multiethnic study of atherosclerosis chronic obstructive pulmonary disease study. Invest Radiol 48(4):223–230

    PubMed  PubMed Central  Google Scholar 

  88. Schoenfeld C, Cebotari S, Hinrichs J et al (2016) MR imaging-derived regional pulmonary parenchymal perfusion and cardiac function for monitoring patients with chronic thromboembolic pulmonary hypertension before and after pulmonary endarterectomy. Radiology 279(3):925–934

    Article  PubMed  Google Scholar 

  89. Prybylski JP, Semelka RC, Jay M (2017) The stability of gadolinium-based contrast agents in human serum: a reanalysis of literature data and association with clinical outcomes. Magn Reson Imaging 38:145–151

    Article  CAS  PubMed  Google Scholar 

  90. Huckle JE, Altun E, Jay M, Semelka RC (2016) Gadolinium deposition in humans: when did we learn that gadolinium was deposited in vivo? Invest Radiol 51(4):236–240

    Article  CAS  PubMed  Google Scholar 

  91. Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB, International Society for Magnetic Resonance in Medicine (2017) Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 16(7):564–570

    Article  PubMed  Google Scholar 

  92. Rengier F, Geisbüsch P, Vosshenrich R et al (2013) State-of-the-art aortic imaging: part I—fundamentals and perspectives of CT and MRI. VASA 42(6):395–412

    Article  PubMed  Google Scholar 

  93. Edelman RR, Silvers RI, Thakrar KH et al (2017) Nonenhanced MR angiography of the pulmonary arteries using single-shot radial quiescent-interval slice-selective (QISS): a technical feasibility study. J Cardiovasc Magn Reson 19(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bannas P, Bell LC, Johnson KM et al (2016) Pulmonary embolism detection with three-dimensional ultrashort echo time MR imaging: experimental study in canines. Radiology 278(2):413–421

    Article  PubMed  Google Scholar 

  95. Bauman G, Puderbach M, Deimling M et al (2009) Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn Reson Med 62(3):656–664

    Article  PubMed  Google Scholar 

  96. Voskrebenzev A, Gutberlet M, Becker L, Wacker F, Vogel-Claussen J (2016) Reproducibility of fractional ventilation derived by Fourier decomposition after adjusting for tidal volume with and without an MRI compatible spirometer. Magn Reson Med 76(5):1542–1550

    Article  PubMed  Google Scholar 

  97. Fischer A, Weick S, Ritter CO et al (2014) SElf-gated non-contrast-enhanced functional lung imaging (SENCEFUL) using a quasi-random fast low-angle shot (FLASH) sequence and proton MRI. NMR Biomed 27(8):907–917

    Article  PubMed  Google Scholar 

  98. Bauman G, Lützen U, Ullrich M et al (2011) Pulmonary functional imaging: qualitative comparison of Fourier decomposition MR imaging with SPECT/CT in porcine lung. Radiology 260(2):551–559

    Article  PubMed  Google Scholar 

  99. Bauman G, Scholz A, Rivoire J et al (2013) Lung ventilation- and perfusion-weighted Fourier decomposition magnetic resonance imaging: in vivo validation with hyperpolarized 3He and dynamic contrast-enhanced MRI. Magn Reson Med 69(1):229–237

    Article  CAS  PubMed  Google Scholar 

  100. Schönfeld C, Cebotari S, Voskrebenzev A et al (2015) Performance of perfusion-weighted Fourier decomposition MRI for detection of chronic pulmonary emboli. J Magn Reson Imaging 42(1):72–79

    Article  PubMed  Google Scholar 

  101. Fedullo PF, Auger WR, Kerr KM, Rubin LJ (2001) Chronic thromboembolic pulmonary hypertension. N Engl J Med 345(20):1465–1472

    Article  CAS  PubMed  Google Scholar 

  102. Tunariu N, Gibbs SJR, Win Z et al (2007) Ventilation-perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J Nucl Med 48(5):680–684

    Article  PubMed  Google Scholar 

  103. Lu Y, Lorenzoni A, Fox JJ et al (2014) Noncontrast perfusion single-photon emission CT/CT scanning: a new test for the expedited, high-accuracy diagnosis of acute pulmonary embolism. Chest 145(5):1079–1088

    Article  PubMed  Google Scholar 

  104. Derlin T, Kelting C, Hueper K et al (2018) Quantitation of perfused lung volume using hybrid SPECT/CT allows refining the assessment of lung perfusion and estimating disease extent in chronic thromboembolic pulmonary hypertension. Clin Nucl Med 43(6):e170–e177

    PubMed  Google Scholar 

  105. Burger IA, Husmann L, Herzog BA et al (2011) Main pulmonary artery diameter from attenuation correction CT scans in cardiac SPECT accurately predicts pulmonary hypertension. J Nucl Cardiol 18(4):634–641

    Article  PubMed  Google Scholar 

  106. Wang L, Li W, Yang Y et al (2016) Quantitative assessment of right ventricular glucose metabolism in idiopathic pulmonary arterial hypertension patients: a longitudinal study. Eur Heart J Cardiovasc Imaging 17(10):1161–1168

    Article  PubMed  Google Scholar 

  107. Oikawa M, Kagaya Y, Otani H et al (2005) Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol 45(11):1849–1855

    Article  CAS  PubMed  Google Scholar 

  108. Saygin D, Highland KB, Farha S et al (2017) Metabolic and functional evaluation of the heart and lungs in pulmonary hypertension by gated 2-[18F]-fluoro-2-deoxy-d-glucose positron emission tomography. Pulm Circ 7(2):428–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kluge R, Barthel H, Pankau H et al (2005) Different mechanisms for changes in glucose uptake of the right and left ventricular myocardium in pulmonary hypertension. J Nucl Med 46(1):25–31

    CAS  PubMed  Google Scholar 

  110. Tatebe S, Fukumoto Y, Oikawa-Wakayama M et al (2014) Enhanced [18F]fluorodeoxyglucose accumulation in the right ventricular free wall predicts long-term prognosis of patients with pulmonary hypertension: a preliminary observational study. Eur Heart J Cardiovasc Imaging 15(6):666–672

    Article  PubMed  Google Scholar 

  111. Fang W, Zhao L, Xiong C-M et al (2012) Comparison of 18F-FDG uptake by right ventricular myocardium in idiopathic pulmonary arterial hypertension and pulmonary arterial hypertension associated with congenital heart disease. Pulm Circ 2(3):365–372

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zhao L, Ashek A, Wang L et al (2013) Heterogeneity in lung (18)FDG uptake in pulmonary arterial hypertension: potential of dynamic (18)FDG positron emission tomography with kinetic analysis as a bridging biomarker for pulmonary vascular remodeling targeted treatments. Circulation 128(11):1214–1224

    Article  CAS  PubMed  Google Scholar 

  113. Marsboom G, Wietholt C, Haney CR et al (2012) Lung 18F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. Am J Respir Crit Care Med 185(6):670–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ohira H, de Kemp R, Pena E et al (2016) Shifts in myocardial fatty acid and glucose metabolism in pulmonary arterial hypertension: a potential mechanism for a maladaptive right ventricular response. Eur Heart J Cardiovasc Imaging 17(12):1424–1431

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Rengier.

Ethics declarations

Conflict of interest

JVC declares the following: Personal fees and funding from Novartis, Siemens, Boehringer Ingelheim, Bayer; Patent “Method of quantitative magnetic resonance lung imaging” EP3107066, US-2016-0367200-A1 22.12.2016. The other authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rengier, F., Melzig, C., Derlin, T. et al. Advanced imaging in pulmonary hypertension: emerging techniques and applications. Int J Cardiovasc Imaging 35, 1407–1420 (2019). https://doi.org/10.1007/s10554-018-1448-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-018-1448-4

Keywords

Navigation