Skip to main content
Log in

Black blood MRI has diagnostic and prognostic value in the assessment of patients with pulmonary hypertension

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Double inversion recovery (DIR) “black blood” MRI suppresses the signal from flowing blood, slow flowing blood causes incomplete suppression resulting in pulmonary blood flow artefact (PFA). This study examines the diagnostic utility and prognostic value of a PFA scoring system in a mixed cohort of patients with pulmonary hypertension (PH).

Methods

DIR-MRI images were reviewed for 233 patients referred with suspected PH who underwent right heart catheterisation (RHC) within 48 h of MR. The degree of PFA was visually scored in all patients from 0 to 5 (0 = absent, 1 = segmental, 2 = lobar, 3 = distal main, 4 = proximal main and 5 = trunk). Pulmonary artery (PA), aorta (Ao), and PA main branch diameters were measured from which PA/Ao ratios and mean PA branch diameters (MPAB) were calculated.

Results

PFA >1 demonstrated high sensitivity (86%) and specificity (85%) for the diagnosis PH in our mixed patient cohort. A good correlation was found with PFA and haemodynamic parameters, PVR (r = 0.70), mPAP (r = 0.65) and CI (r = −0.53). PFA predicted mortality (P = 0.005) during the mean follow-up for 19 months. PFA scoring demonstrated good inter-observer agreement (k = 0.83).

Conclusions

PFA scoring is of diagnostic and prognostic value in the assessment of patients with suspected PH. and is a predictor of mortality.

Key Points

A simple magnetic resonance method of assessing pulmonary blood flow is presented

This involves a qualitative scoring system of black blood pulmonary flow artefacts

This is simple to perform and seems reproducible in pulmonary hypertension patients

The degree of artefact correlates well with right heart catheter measurements

Prominent pulmonary flow artefact predicts mortality in patients with pulmonary hypertension

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D’Alonzo GE, Barst RJ, Ayres SM et al (1991) Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 115(5):343–349

    PubMed  Google Scholar 

  2. Humbert M, Sitbon O, Simonneau G (2004) Treatment of pulmonary arterial hypertension. N Engl J Med 351(14):1425–1436. doi:10.1056/NEJMra040291

    Article  PubMed  CAS  Google Scholar 

  3. Benza R, Biederman R, Murali S, Gupta H (2008) Role of cardiac magnetic resonance imaging in the management of patients with pulmonary arterial hypertension. J Am Coll Cardiol 52(21):1683–1692. doi:10.1016/j.jacc.2008.08.033

    Article  PubMed  Google Scholar 

  4. Alunni JP, Degano B, Arnaud C et al (2010) Cardiac MRI in pulmonary artery hypertension: correlations between morphological and functional parameters and invasive measurements. Eur Radiol 20(5):1149–1159. doi:10.1007/s00330-009-1664-3

    Article  PubMed  Google Scholar 

  5. Di Guglielmo L, Dore R, Vespro V (2005) Pulmonary hypertension: role of computed tomography and magnetic resonance imaging. Ital Heart J 6(10):846–851

    PubMed  Google Scholar 

  6. Kovacs G, Reiter G, Reiter U, Rienmuller R, Peacock A, Olschewski H (2008) The emerging role of magnetic resonance imaging in the diagnosis and management of pulmonary hypertension. Respiration 76(4):458–470. doi:10.1159/000158548

    Article  PubMed  Google Scholar 

  7. Marrone G, Mamone G, Luca A et al (2010) The role of 1.5T cardiac MRI in the diagnosis, prognosis and management of pulmonary arterial hypertension. Int J Cardiovasc Imaging 26(6):665–681. doi:10.1007/s10554-010-9623-2

    Article  PubMed  Google Scholar 

  8. Song HK, Wright AC, Wolf RL, Wehrli FW (2002) Multislice double inversion pulse sequence for efficient black-blood MRI. Magn Reson Med 47(3):616–620. doi:10.1002/mrm.10094

    Article  PubMed  Google Scholar 

  9. Edelman RR, Chien D, Kim D (1991) Fast selective black blood MR imaging. Radiology 181(3):655–660

    PubMed  CAS  Google Scholar 

  10. Yarnykh VL, Yuan C (2003) Multislice double inversion-recovery black-blood imaging with simultaneous slice reinversion. J Magn Reson Imaging 17(4):478–483. doi:10.1002/jmri.10278

    Article  PubMed  Google Scholar 

  11. Frank H, Globits S, Glogar D, Neuhold A, Kneussl M, Mlczoch J (1993) Detection and quantification of pulmonary artery hypertension with MR imaging: results in 23 patients. AJR Am J Roentgenol 161(1):27–31

    PubMed  CAS  Google Scholar 

  12. von Schulthess GK, Fisher MR, Higgins CB (1985) Pathologic blood flow in pulmonary vascular disease as shown by gated magnetic resonance imaging. Ann Intern Med 103(3):317–323

    Google Scholar 

  13. Bouchard A, Higgins CB, Byrd BF 3rd, Amparo EG, Osaki L, Axelrod R (1985) Magnetic resonance imaging in pulmonary arterial hypertension. Am J Cardiol 56(15):938–942

    Article  PubMed  CAS  Google Scholar 

  14. White RD, Higgins CB (1989) Magnetic resonance imaging of thoracic vascular disease. J Thorac Imaging 4(2):34–50

    Article  PubMed  CAS  Google Scholar 

  15. Galie N, Hoeper MM, Humbert M et al (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 34(6):1219–1263. doi:10.1183/09031936.00139009

    Article  PubMed  CAS  Google Scholar 

  16. Ley S, Grunig E, Kiely DG, van Beek E, Wild J (2010) Computed tomography and magnetic resonance imaging of pulmonary hypertension: Pulmonary vessels and right ventricle. J Magn Reson Imaging 32(6):1313–1324. doi:10.1002/jmri.22373

    Article  PubMed  Google Scholar 

  17. Ohno Y, Hatabu H, Murase K et al (2007) Primary pulmonary hypertension: 3D dynamic perfusion MRI for quantitative analysis of regional pulmonary perfusion. AJR Am J Roentgenol 188(1):48–56. doi:10.2214/AJR.05.0135

    Article  PubMed  Google Scholar 

  18. Ohno Y, Koyama H, Nogami M et al (2008) Dynamic perfusion MRI: capability for evaluation of disease severity and progression of pulmonary arterial hypertension in patients with connective tissue disease. J Magn Reson Imaging 28(4):887–899. doi:10.1002/jmri.21550

    Article  PubMed  Google Scholar 

  19. Ley S, Mereles D, Risse F et al (2007) Quantitative 3D pulmonary MR-perfusion in patients with pulmonary arterial hypertension: correlation with invasive pressure measurements. Eur J Radiol 61(2):251–255. doi:10.1016/j.ejrad.2006.08.028

    Article  PubMed  Google Scholar 

  20. Rebergen SA, van der Wall EE, Doornbos J, de Roos A (1993) Magnetic resonance measurement of velocity and flow: technique, validation, and cardiovascular applications. Am Heart J 126(6):1439–1456

    Article  PubMed  CAS  Google Scholar 

  21. Chatzimavroudis GP, Oshinski JN, Franch RH, Walker PG, Yoganathan AP, Pettigrew RI (2001) Evaluation of the precision of magnetic resonance phase velocity mapping for blood flow measurements. J Cardiovasc Magn Reson 3(1):11–19

    Article  PubMed  CAS  Google Scholar 

  22. Sanz J, Kuschnir P, Rius T et al (2007) Pulmonary arterial hypertension: noninvasive detection with phase-contrast MR imaging. Radiology 243(1):70–79. doi:10.1148/radiol.2431060477

    Article  PubMed  Google Scholar 

  23. Tardivon AA, Mousseaux E, Brenot F et al (1994) Quantification of hemodynamics in primary pulmonary hypertension with magnetic resonance imaging. Am J Respir Crit Care Med 150(4):1075–1080

    PubMed  CAS  Google Scholar 

  24. Kondo C, Caputo GR, Masui T et al (1992) Pulmonary hypertension: pulmonary flow quantification and flow profile analysis with velocity-encoded cine MR imaging. Radiology 183(3):751–758

    PubMed  CAS  Google Scholar 

  25. Ley S, Mereles D, Puderbach M et al (2007) Value of MR phase-contrast flow measurements for functional assessment of pulmonary arterial hypertension. Eur Radiol 17(7):1892–1897. doi:10.1007/s00330-006-0559-9

    Article  PubMed  Google Scholar 

  26. Bradlow WM, Gatehouse PD, Hughes RL et al (2007) Assessing normal pulse wave velocity in the proximal pulmonary arteries using transit time: a feasibility, repeatability, and observer reproducibility study by cardiovascular magnetic resonance. J Magn Reson Imaging 25(5):974–981. doi:10.1002/jmri.20888

    Article  PubMed  Google Scholar 

  27. Saba TS, Foster J, Cockburn M, Cowan M, Peacock AJ (2002) Ventricular mass index using magnetic resonance imaging accurately estimates pulmonary artery pressure. Eur Respir J 20(6):1519–1524

    Article  PubMed  CAS  Google Scholar 

  28. Hagger D, Condliffe R, Woodhouse N et al (2009) Ventricular mass index correlates with pulmonary artery pressure and predicts survival in suspected systemic sclerosis-associated pulmonary arterial hypertension. Rheumatology (Oxford) 48(9):1137–1142. doi:10.1093/rheumatology/kep187

    Article  Google Scholar 

Download references

Acknowledgements

A.J.S., H.M., R.C., C.E., J.M.W. and D.G.K. received funding from the National Institute for Health Research (NIHR) via its Biomedical Research Units funding scheme. H.M. and J.M.W. are also funded by the Engineering and Physical Sciences Research Council (EPSRC). D.C. receives funding from Bayer Schering, S.R. from Pfizer and J.H. from Actelion Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Swift.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swift, A.J., Rajaram, S., Marshall, H. et al. Black blood MRI has diagnostic and prognostic value in the assessment of patients with pulmonary hypertension. Eur Radiol 22, 695–702 (2012). https://doi.org/10.1007/s00330-011-2306-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-011-2306-0

Keywords

Navigation