Skip to main content
Log in

Cadmium stress inhibits the growth of primary roots by interfering auxin homeostasis in Sorghum bicolor seedlings

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Phytotoxic effects of cadmium (Cd), a heavy metal pollutant, on plants have been extensively examined. Auxin plays vital roles in many aspects of plant development. The association between root growth and auxin signaling in Cd-stressed Sorghum bicolor was analyzed in our study. Root elongation, shoot length and the maximal photochemical efficiency (Fv/Fm) in S. bicolor seedlings were dramatically reduced after Cd stress treatment. Cd was found to be predominantly confined in the meristematic zone using a Cd-staining method. Cd stress remarkably influenced the cell cycle progression at the root tip as shown by EdU (ethynyl deoxyuridine) assay. The content of IAA was markedly diminished in the roots of Cd-stressed S. bicolor, which was along with the increase of IAA oxidase activity. Auxin transport inhibitors, 1-naphthoxyacetic acid (1-NOA) or 1- naphthylphthalamic acid (NPA), greatly reduced plant tolerance to Cd stress, whereas exogenous application of 1-naphthaleneacetic acid (NAA) improved Cd tolerance in S. bicolor seedlings. Cd stress altered the transcript level of some putative auxin biosynthetic genes. In addition, NAA interfered with the homeostasis of Cd-induced reactive oxygen species (ROS). These results revealed that Cd stress disturbed the growth of S. bicolor seedlings by affecting the homeostasis of auxin and ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABCB:

ATP binding cassette B

ARF:

auxin response factor

AUX1/LAX:

Auxin resistant 1/like AUX1

CAT:

catalase

Cd:

cadmium

EdU:

ethynyl deoxyuridine

GH3:

Gretchen Hagen 3

IAA:

indole-3-acetic acid

MDR:

multidrug-resistance

NAA:

1-naphthaleneacetic acid

NPA:

1-naphthylphthalamic acid

NOA:

1-naphthoxyacetic acid

PBS:

potassium phosphate buffer

PILS:

PIN-LIKES

PIN:

PIN-FORMED

POD:

peroxidase

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TBARS:

thiobarbituric acid reactive substance

References

  • Agami RA, Mohamed GF (2013) Exogenous treatment with indole- 3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicol Environ Saf 94:164–171

    Article  CAS  PubMed  Google Scholar 

  • Balestri M, Ceccarini A, Forino LM, Zelko I, Martinka M, Lux A, Ruffini Castiglione M (2014) Cadmium uptake, localization and stress-induced morphogenic response in the fern Pteris vittata. Planta 239:1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Barbez E, Kubes M, Rolcik J, Beziat C, Pencik A, Wang B, Rosquete MR, Zhu J, Dobrev PI, Lee Y, Zazimalova E, Petrasek J, Geisler M, Friml J, Kleine-Vehn J (2012) A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485:119–122

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Jones J (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol 8:494–500

    Article  CAS  PubMed  Google Scholar 

  • Boussama N, Ouariti O, Ghorbal MH (1999) Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress. J Plant Nutr 22:731–752

    Article  CAS  Google Scholar 

  • Chandler JW (2009) Local auxin production: A small contribution to a big field. Bioessays 31:60–70

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  • Elobeid M, Gobel C, Feussner I, Polle A (2012) Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot 63:1413–1421

    Article  CAS  PubMed  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchl-oride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals - an important defense-mechanism studied in transgenic plants. Plant Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Grant MR, Jones JDG (2009) Hormone (dis)harmony moulds plant health and disease. Science 324:750–752

    Article  CAS  PubMed  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Phagocyte-derived reactive species: salvation or suicide? Trends Biochem Sci 31:509–515

    Article  CAS  PubMed  Google Scholar 

  • Heyno E, Klose C, Krieger-Liszkay A, (2008) Origin of cadmiuminduced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytol 179:687–99.

    Article  CAS  PubMed  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hu YF, Zhou G, Na XF, Yang L, Nan WB, Liu X, Zhang YQ, Li JL, Bi YR (2013) Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J Plant Physiol 170:965–975

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Choudhuri M (1981) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot 12:345–354

    Article  Google Scholar 

  • Jin TY, Nordberg M, Frech W, Dumont X, Bernard A, Ye TT, Kong QH, Wang ZJ, Li PJ, Lundstrom NG, Li YD, Nordberg GF (2002) Cadmium biomonitoring and renal dysfunction among a population environmentally exposed to cadmium from smelting in China (ChinaCad). Biometals 15:397–410

    Article  CAS  PubMed  Google Scholar 

  • Kotogany E, Dudits D, Horvath GV, Ayaydin F (2010) A rapid and robust assay for detection of S-phase cell cycle progression in plant cells and tissues by using ethynyl deoxyuridine. Plant methods 6:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Li TQ, Yang XE, Lu LL, Islam E, He ZL (2009) Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. J Hazard Mater 169:734–741

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17:1090–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 49:249–272

    Article  CAS  PubMed  Google Scholar 

  • Lv W, Yang L, Xu C, Shi Z, Shao J, Xian M, Chen J (2017) Cadmium Disrupts the Balance between Hydrogen Peroxide and Superoxide Radical by Regulating Endogenous Hydrogen Sulfide in the Root Tip of Brassica rapa. Front Plant Sci 8:232

    PubMed  PubMed Central  Google Scholar 

  • Martín-Rejano EM, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, Rexach J, Navarro-Gochicoa MT, González-Fontes A (2011) Auxin and ethylene are involved in the responses of root system architecture to low boron supply in Arabidopsis seedlings. Physiol Plantarum 142:170–178

    Article  Google Scholar 

  • Michelet L, Roach T, Fischer BB, Bedhomme M, Lemaire SD, Krieger-Liszkay A (2013) Down-regulation of catalase activity allows transient accumulation of a hydrogen peroxide signal in Chlamydomonas reinhardtii. Plant Cell Environ 36:1204–1213

    Article  CAS  PubMed  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  CAS  PubMed  Google Scholar 

  • Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Csh Perspect Biol 2

    Google Scholar 

  • Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    Article  CAS  PubMed  Google Scholar 

  • Pasternak T, Rudas V, Potters G, Jansen MAK (2005) Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environ Exp Bot 53:299–314

    Article  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang HB, Wang XY, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang LF, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Pena LB, Barcia RA, Azpilicueta CE, Mendez AA, Gallego SM, (2012) Oxidative post translational modifications of proteins related to cell cycle are involved in cadmium toxicity in wheat seedlings. Plant Sci 196:1–7

    Article  CAS  PubMed  Google Scholar 

  • Pineros MA, Shaff JE, Kochian V (1998) Development, characterization, and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat. Plant Physiol 116:1393–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueno MC, Del Rio LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Shen C, Bai Y, Wang S, Zhang S, Wu Y, Chen M, Jiang D, Qi Y (2010) Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress. FEBS J 277:2954–2969

    Article  CAS  PubMed  Google Scholar 

  • Shimbo S, Zhang ZW, Watanabe T, Nakatsuka H, Matsuda-Inoguchi N, Higashikawa K, Ikeda M (2001) Cadmium and lead contents in rice and other cereal products in Japan in 1998-2000. Sci Total Environ 281:165–175

    Article  CAS  PubMed  Google Scholar 

  • Stobart AK, Griffiths WT, Ameenbukhari I, Sherwood RP (1985) The effect Of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plantarum 63:293–298

    Article  CAS  Google Scholar 

  • Sun P, Tian QY, Chen J, Zhang WH (2010) Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J Exp Bot 61:347–356

    Article  CAS  PubMed  Google Scholar 

  • Szechyńska-Hebda M, Skrzypek E, Dąbrowska G, Biesaga-Kościelniak J, Filek M, Wędzony M (2007) The role of oxidative stress induced by growth regulators in the regeneration process of wheat. Acta Physiol Plant 29:327–337

    Article  Google Scholar 

  • Tognetti VB, Van Aken O, Morreel K, Vandenbroucke K, van de Cotte B, De Clercq I, Chiwocha S, Fenske R, Prinsen E, Boerjan W, Genty B, Stubbs KA, Inze D, Van Breusegem F (2010) Perturbation of indole-3-butyric acid homeostasis by the UDPglucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 22:2660–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuan TA, Paunova S, Nedeva D, Popova L (2011) Nitric oxide alleviates cadmium toxicity on photosynthesis in pea plants. Cr Acad Bulg Sci 64:1137–1142

    CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  CAS  PubMed  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Verma K, Shekhawat GS, Sharma A, Mehta SK, Sharma V (2008) Cadmium induced oxidative stress and changes in soluble and ionically bound cell wall peroxidase activities in roots of seedling and 3-4 leaf stage plants of Brassica juncea (L.) czern. Plant Cell Rep 27:1261–1269

    Article  CAS  PubMed  Google Scholar 

  • Wang HH, Shan XQ, Wen B, Owens G, Fang J, Zhang SZ (2007) Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environ Exp Bot 61:246–253

    Article  CAS  Google Scholar 

  • Wang XY, Gowik U, Tang HB, Bowers JE, Westhoff P, Paterson AH (2009) Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol 10

    Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: Regulation, action, and interaction. Ann Bot-London 95:707–735

    Article  CAS  Google Scholar 

  • Xiao XY, Chen TB, An ZZ, Lei M, Huang ZC, Liao XY, Liu YR (2008) Potential of Pteris vittata L. for phytoremediation of sites co-contaminated with cadmium and arsenic: The tolerance and accumulation. J Environ Sci-China 20:62–67

    Article  PubMed  Google Scholar 

  • Xiong J, Lu H, Lu K, Duan Y, An L, Zhu C (2009) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta 230:599–610

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Sun C, Shen C, Wang S, Liu F, Liu Y, Chen Y, Li C, Qian Q, Aryal B, Geisler M, Jiang DA, Qi Y (2015) The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). Plant J 83:818–830

    Article  CAS  PubMed  Google Scholar 

  • Yuan HM, Xu HH, Liu WC, Lu YT (2013) Copper regulates primary root elongation through PIN1-mediated auxin redistribution. Plant Cell Physiol 54:766–778

    Article  CAS  PubMed  Google Scholar 

  • Zhang FQ, Shi WY, Jin ZX, Shen ZG (2003) Response of antioxidative enzymes in cucumber chloroplasts to cadmium toxicity. J Plant Nutr 26:1779–1788

    Article  CAS  Google Scholar 

  • Zhao FY, Han MM, Zhang SY, Wang K, Zhang CR, Liu T, Liu W (2012) Hydrogen peroxide-mediated growth of the root system occurs via auxin signaling modification and variations in the expression of cell-cycle genes in rice seedlings exposed to cadmium stress. J Integr Plant Biol 54:991–1006

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zong-an Huang or Chen-liang Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Yh., Zhang, Ch., Zheng, Qx. et al. Cadmium stress inhibits the growth of primary roots by interfering auxin homeostasis in Sorghum bicolor seedlings. J. Plant Biol. 60, 593–603 (2017). https://doi.org/10.1007/s12374-017-0024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-017-0024-0

Keywords

Navigation