Skip to main content

Advertisement

Log in

A Review of Ocular Movement Abnormalities in Hereditary Cerebellar Ataxias

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Cerebellar ataxias are a wide heterogeneous group of disorders that may present with fine motor deficits as well as gait and balance disturbances that have a significant influence on everyday activities. To review the ocular movements in cerebellar ataxias in order to improve the clinical knowledge of cerebellar ataxias and related subtypes. English papers published from January 1990 to May 2022 were selected by searching PubMed services. The main search keywords were ocular motor, oculomotor, eye movement, eye motility, and ocular motility, along with each ataxia subtype. The eligible papers were analyzed for clinical presentation, involved mutations, the underlying pathology, and ocular movement alterations. Forty-three subtypes of spinocerebellar ataxias and a number of autosomal dominant and autosomal recessive ataxias were discussed in terms of pathology, clinical manifestations, involved mutations, and with a focus on the ocular abnormalities. A flowchart has been made using ocular movement manifestations to differentiate different ataxia subtypes. And underlying pathology of each subtype is reviewed in form of illustrated models to reach a better understanding of each disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Witek N, Hawkins J, Hall D. Genetic ataxias: update on classification and diagnostic approaches. Curr Neurol Neurosci Rep [Internet]. 2021;21(3):13. https://doi.org/10.1007/s11910-021-01092-4.

    Article  PubMed  Google Scholar 

  2. Joo B-E, Lee C-N, Park K-W. Prevalence rate and functional status of cerebellar ataxia in Korea. The Cerebellum. 2012;11(3):733–8.

    Article  PubMed  Google Scholar 

  3. Musselman KE, Stoyanov CT, Marasigan R, Jenkins ME, Konczak J, Morton SM, et al. Prevalence of ataxia in children: a systematic review. Neurology. 2014;82(1):80–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Oh AJ, Chen T, Shariati MA, Jehangir N, Hwang TN, Liao YJ. A simple saccadic reading test to assess ocular motor function in cerebellar ataxia. PLoS One. 2018;13(11):e0203924.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lopez A, Ferrero F, Postolache O. An affordable method for evaluation of ataxic disorders based on electrooculography. Sensors (Basel). 2019;19(17):3756.

    Article  PubMed  Google Scholar 

  6. Jayadev S, Bird TD. Hereditary ataxias: overview. Genet Med. 2013;15(9):673–83.

    Article  CAS  PubMed  Google Scholar 

  7. Manto M, Gandini J, Feil K, Strupp M. Cerebellar ataxias: an update. Curr Opin Neurol [Internet]. 2020;33(1):150–60. https://doi.org/10.1097/WCO.0000000000000774.

    Article  PubMed  Google Scholar 

  8. Kassavetis P, Kaski D, Anderson T, Hallett M. Eye movement disorders in movement disorders. Mov Disord Clin Pract [Internet]. 2022;9(3):284–95. https://doi.org/10.1002/mdc3.13413.

    Article  PubMed  Google Scholar 

  9. Alexandre MF, Rivaud-Pechoux S, Challe G, Durr A, Gaymard B. Functional consequences of oculomotor disorders in hereditary cerebellar ataxias. Cerebellum. 2013;12(3):396–405.

    Article  CAS  PubMed  Google Scholar 

  10. Corral-Juan M, Casquero P, Giraldo-Restrepo N, Laurie S, Martinez-Piñeiro A, Mateo-Montero RC, et al. New spinocerebellar ataxia subtype caused by SAMD9L mutation triggering mitochondrial dysregulation (SCA49). Brain Commun. 2022;4(2):fcac030.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Du Y-C, Ma Y, Shao Y-R, Gan S-R, Dong Y, Wu Z-Y. Factors associated with intergenerational instability of ATXN3 CAG repeat and genetic anticipation in Chinese patients with spinocerebellar ataxia type 3. The Cerebellum. 2020;19(6):902–6.

    Article  CAS  PubMed  Google Scholar 

  12. Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. Nat Rev Dis Prim. 2019;5(1):24.

    Article  PubMed  Google Scholar 

  13. Whaley NR, Fujioka S, Wszolek ZK. Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis. 2011;6(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Harding AE. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. Brain. 1982;105(1):1–28.

    Article  CAS  PubMed  Google Scholar 

  15. Fujioka S, Sundal C, Wszolek ZK. Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis. 2013;8(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Orr HT, Chung M, Banfi S, Kwiatkowski TJ, Servadio A, Beaudet AL, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4(3):221–6.

    Article  CAS  PubMed  Google Scholar 

  17. Paulson HL. The spinocerebellar ataxias. J Neuroophthalmol. 2009;29(3):227–37.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Adachi M, Kawanami T, Ohshima H, Hosoya T. Characteristic signal changes in the pontine base on T2- and multishot diffusion-weighted images in spinocerebellar ataxia type 1. Neuroradiology. 2006;48(1):8–13.

    Article  CAS  PubMed  Google Scholar 

  19. Ishida C, Komai K, Yonezawa K, Sakajiri K-I, Nitta E, Kawashima A, et al. An autopsy case of an aged patient with spinocerebellar ataxia type 2. Neuropathology. 2011;31(5):510–8.

    Article  PubMed  Google Scholar 

  20. Vale J, Bugalho P, Silveira I, Sequeiros J, Guimarães J, Coutinho P. Autosomal dominant cerebellar ataxia: frequency analysis and clinical characterization of 45 families from Portugal. Eur J Neurol. 2010;17(1):124–8.

    Article  CAS  PubMed  Google Scholar 

  21. Rossi M, Perez-Lloret S, Doldan L, Cerquetti D, Balej J, Millar Vernetti P, et al. Autosomal dominant cerebellar ataxias: a systematic review of clinical features. Eur J Neurol. 2014;21(4):607–15.

    Article  CAS  PubMed  Google Scholar 

  22. Moscovich M, Okun MS, Favilla C, Figueroa KP, Pulst SM, Perlman S, et al. Clinical evaluation of eye movements in spinocerebellar ataxias: a prospective multicenter study. J neuro-ophthalmology Off J North Am Neuro-Ophthalmology Soc. 2015;35(1):16–21.

    Article  CAS  Google Scholar 

  23. Nishiguchi KM, Aoki M, Nakazawa T, Abe T. Macular degeneration as a common cause of visual loss in spinocerebellar ataxia type 1 (SCA1) patients. Ophthalmic Genet. 2019;40(1):49–53.

    Article  PubMed  Google Scholar 

  24. Burk K, Abele M, Fetter M, Dichgans J, Skalej M, Laccone F, et al. Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996;119(5):1497–505.

    Article  PubMed  Google Scholar 

  25. Rodriguez-Labrada R, Velazquez-Perez L, Auburger G, Ziemann U, Canales-Ochoa N, Medrano-Montero J, et al. Spinocerebellar ataxia type 2: measures of saccade changes improve power for clinical trials. Mov Disord. 2016;31(4):570–8.

    Article  CAS  PubMed  Google Scholar 

  26. Kim JS, Kim JS, Youn J, Seo D-W, Jeong Y, Kang J-H, et al. Ocular motor characteristics of different subtypes of spinocerebellar ataxia: distinguishing features. Mov Disord. 2013;28(9):1271–7.

    Article  PubMed  Google Scholar 

  27. Burk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, et al. Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2, and SCA3. J Neurol. 1999;246(9):789–97.

    Article  CAS  PubMed  Google Scholar 

  28. Harmuth T, Weber JJ, Zimmer AJ, Sowa AS, Schmidt J, Fitzgerald JC, et al. Mitochondrial dysfunction in spinocerebellar ataxia type 3 is linked to VDAC1 deubiquitination. Int J Mol Sci. 2022;23(11):5933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koeppen AH. The neuropathology of spinocerebellar ataxia type 3/Machado-Joseph disease. Adv Exp Med Biol. 2018;1049:233–41.

    Article  CAS  PubMed  Google Scholar 

  30. Clausi S, De Luca M, Chiricozzi FR, Tedesco AM, Casali C, Molinari M, et al. Oculomotor deficits affect neuropsychological performance in oculomotor apraxia type 2. Cortex. 2013;49(3):691–701.

    Article  PubMed  Google Scholar 

  31. Hamilton SR. Neuro-ophthalmology of movement disorders. Curr Opin Ophthalmol. 2000;11(6):403–7.

    Article  CAS  PubMed  Google Scholar 

  32. Kang SL, Shaikh AG, Ghasia FF. Vergence and strabismus in neurodegenerative disorders. Front Neurol. 2018;9:299.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Butteriss D, Chinnery P, Birchall D. Radiological characterization of spinocerebellar ataxia type 6. Br J Radiol. 2005;78(932):694–6.

    Article  CAS  PubMed  Google Scholar 

  34. Franklin GL, Meira AT, Camargo CHF, Nascimento FA, Teive HAG. Upward gaze palsy: a valuable sign to distinguish spinocerebellar ataxias. The Cerebellum. 2020;19(5):685–90.

    Article  CAS  PubMed  Google Scholar 

  35. Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert MF, et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet. 1996;59(2):392–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hellenbroich Y, Bernard V, Zühlke C. Spinocerebellar ataxia type 4 and 16q22.1-linked Japanese ataxia are not allelic. J Neurol. 2008;255(4):612–3.

    Article  CAS  PubMed  Google Scholar 

  37. Hellenbroich Y, Gierga K, Reusche E, Schwinger E, Deller T, de Vos RAI, et al. Spinocerebellar ataxia type 4 (SCA4): Initial pathoanatomical study reveals widespread cerebellar and brainstem degeneration. J Neural Transm. 2006;113(7):829–43.

    Article  CAS  PubMed  Google Scholar 

  38. Maschke M, Oehlert G, Xie T-D, Perlman S, Subramony SH, Kumar N, et al. Clinical feature profile of spinocerebellar ataxia type 1-8 predicts genetically defined subtypes. Mov Disord. 2005;20:1405–12.

    Article  PubMed  Google Scholar 

  39. Accogli A, St-Onge J, Addour-Boudrahem N, Lafond-Lapalme J, Laporte AD, Rouleau GA, et al. Heterozygous missense pathogenic variants within the second spectrin repeat of SPTBN2 lead to infantile-onset cerebellar ataxia. J Child Neurol. 2020;35(2):106–10.

    Article  PubMed  Google Scholar 

  40. Dick KA, Ikeda Y, Day JW, Ranum LPW. Spinocerebellar ataxia type 5. Handb Clin Neurol. 2012;103:451–9.

    Article  PubMed  Google Scholar 

  41. Burk K, Zuhlke C, Konig IR, Ziegler A, Schwinger E, Globas C, et al. Spinocerebellar ataxia type 5: clinical and molecular genetic features of a German kindred. Neurology. 2004;62(2):327–9.

    Article  CAS  PubMed  Google Scholar 

  42. Rosini F, Pretegiani E, Battisti C, Dotti MT, Federico A, Rufa A. Eye movement changes in autosomal dominant spinocerebellar ataxias. Neurol Sci. 2020;41:1719–34.

    Article  PubMed  Google Scholar 

  43. Nicita F, Nardella M, Bellacchio E, Alfieri P, Terrone G, Piccini G, et al. Heterozygous missense variants of SPTBN2 are a frequent cause of congenital cerebellar ataxia. Clin Genet. 2019;96(2):169–75.

    Article  CAS  PubMed  Google Scholar 

  44. Spagnoli C, Frattini D, Gozzi F, Rizzi S, Salerno GG, Cimino L, et al. Infantile-onset spinocerebellar ataxia type 5 (SCA5) with optic atrophy and peripheral neuropathy. The Cerebellum. 2021;20(3):481–3.

    Article  PubMed  Google Scholar 

  45. Rentiya Z, Hutnik R, Mekkam YQ, Bae J. The pathophysiology and clinical manifestations of spinocerebellar ataxia type 6. Cerebellum. 2020;19:459–64.

    Article  PubMed  Google Scholar 

  46. Sinke RJ, Ippel EF, Diepstraten CM, Beemer FA, Wokke JH, van Hilten BJ, et al. Clinical and molecular correlations in spinocerebellar ataxia type 6: a study of 24 Dutch families. Arch Neurol. 2001;58:1839–44.

    Article  CAS  PubMed  Google Scholar 

  47. Christova P, Anderson JH, Gomez CM. Impaired eye movements in presymptomatic spinocerebellar ataxia type 6. Arch Neurol. 2008;65(4):530–6.

    Article  PubMed  Google Scholar 

  48. Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, et al. Spinocerebellar ataxia type 6: Gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol. 1997;42(6):933–50.

    Article  CAS  PubMed  Google Scholar 

  49. Martin J-J. Spinocerebellar ataxia type 7. Handb Clin Neurol. 2012;103:475–91.

    Article  PubMed  Google Scholar 

  50. Seidel K, Siswanto S, Brunt ERP, den Dunnen W, Korf H-W, Rüb U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol. 2012;124(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  51. Isashiki Y, Kii Y, Ohba N, Nakagawa M. Retinopathy associated with Machado--Joseph disease (spinocerebellar ataxia 3) with CAG trinucleotide repeat expansion. Am J Ophthalmol. 2001;131(6):808–10.

    Article  CAS  PubMed  Google Scholar 

  52. Stephen CD, Schmahmann JD. Eye movement abnormalities are ubiquitous in the spinocerebellar ataxias. Cerebellum. 2019;18(6):1130–6.

    Article  PubMed  Google Scholar 

  53. Oh AK, Jacobson KM, Jen JC, Baloh RW. Slowing of voluntary and involuntary saccades: an early sign in spinocerebellar ataxia type 7. Ann Neurol. 2001;49(6):801–4.

    Article  CAS  PubMed  Google Scholar 

  54. Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet. 1999;21(4):379–84.

    Article  CAS  PubMed  Google Scholar 

  55. Zeman A. Spinocerebellar ataxia type 8 in Scotland: genetic and clinical features in seven unrelated cases and a review of published reports. J Neurol Neurosurg Psychiatry. 2004;75(3):459–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim JS, Son TO, Youn J, Ki C-S, Cho JW. Non-ataxic phenotypes of SCA8 mimicking amyotrophic lateral sclerosis and Parkinson disease. J Clin Neurol. 2013;9(4):274.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhou Y, Yuan Y, Liu Z, Zeng S, Chen Z, Shen L, et al. Genetic and clinical analyses of spinocerebellar ataxia type 8 in mainland China. J Neurol. 2019;266:2979–86.

    Article  CAS  PubMed  Google Scholar 

  58. Hernandez-Castillo CR, Diaz R, Vaca-Palomares I, Torres DL, Chirino A, Campos-Romo A, et al. Extensive cerebellar and thalamic degeneration in spinocerebellar ataxia type 10. Parkinsonism Relat Disord. 2019;66:182–8.

    Article  PubMed  Google Scholar 

  59. Teive HAG, Munhoz RP, Arruda WO, Lopes-Cendes I, Raskin S, Werneck LC, et al. Spinocerebellar ataxias: genotype-phenotype correlations in 104 Brazilian families. Clinics (Sao Paulo). 2012;67(5):443–9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ashizawa T. Spinocerebellar ataxia type 10. Handb Clin Neurol. 2012;103:507–19.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sullivan R, Yau WY, O’Connor E, Houlden H. Spinocerebellar ataxia: an update. J Neurol. 2019;266(2):533–44.

    Article  PubMed  Google Scholar 

  62. Johnson J, Wood N, Giunti P, Houlden H. Clinical and genetic analysis of spinocerebellar ataxia type 11. The Cerebellum. 2008;7(2):159–64.

    Article  CAS  PubMed  Google Scholar 

  63. Cohen RL, Margolis RL. Spinocerebellar ataxia type 12: clues to pathogenesis. Curr Opin Neurol. 2016;29(6):735–42.

    Article  CAS  PubMed  Google Scholar 

  64. Ganaraja VH, Holla VV, Stezin A, Kamble N, Yadav R, Purushottam M, et al. Clinical, radiological, and genetic profile of spinocerebellar ataxia 12: a hospital-based cohort analysis. Tremor Other Hyperkinet Mov. 2022;12(1):1–11.

    Google Scholar 

  65. Stevanin G, Dürr A. Spinocerebellar ataxia 13 and 25. Handb Clin Neurol. 2012;103:549–53.

    Article  PubMed  Google Scholar 

  66. Herman-Bert A, Stevanin G, Netter J-C, Rascol O, Brassat D, Calvas P, et al. Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3-q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. Am J Hum Genet [Internet]. 2000;67(1):229–35. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002929707624495. Accessed 20 Aug 2022

    Article  CAS  PubMed  Google Scholar 

  67. Kim M, Oh SH, Cho JW, Lee J-H. Spinocerebellar ataxia 13 presenting with pure cerebellar syndrome in a Korean family. J Mov Disord [Internet]. 2020;13(3):244–6. Available from: http://e-jmd.org/journal/view.php?doi=10.14802/jmd.20064. Accessed 20 Aug 2022

    Article  PubMed  Google Scholar 

  68. Chen D-H, Raskind WH, Bird TD. Spinocerebellar ataxia type 14. Handb Clin Neurol. 2012;103:555–9.

    Article  PubMed  Google Scholar 

  69. Gardner RJM, Knight MA, Hara K, Tsuji S, Forrest SM, Storey E. Spinocerebellar ataxia type 15. Cerebellum. 2005;4(1):47–50.

    Article  CAS  PubMed  Google Scholar 

  70. Tipton PW, Guthrie K, Strongosky A, Reimer R, Wszolek ZK. Spinocerebellar ataxia 15: a phenotypic review and expansion. Neurol Neurochir Pol [Internet]. 2017;51(1):86–91. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0028384316302031. Accessed 20 Aug 2022

    Article  PubMed  Google Scholar 

  71. Wang L, Hao Y, Yu P, Cao Z, Zhang J, Zhang X, et al. Identification of a splicing mutation in ITPR1 via WES in a Chinese early-onset spinocerebellar ataxia family. The Cerebellum [Internet]. 2018;17(3):294–9. https://doi.org/10.1007/s12311-017-0896-z.

    Article  CAS  PubMed  Google Scholar 

  72. Miyoshi Y, Yamada T, Tanimura M, Taniwaki T, Arakawa K, Ohyagi Y, et al. A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology [Internet]. 2001;57(1):96–100. https://doi.org/10.1212/WNL.57.1.96.

    Article  CAS  PubMed  Google Scholar 

  73. Toyoshima Y, Takahashi H. Spinocerebellar ataxia type 17 (SCA17). Adv Exp Med Biol. 2018;1049:219–31.

    Article  CAS  PubMed  Google Scholar 

  74. Ivanova E, Nuzhnyi E, Abramycheva N, Klyushnikov S, Fedotova E, Illarioshkin S. Mutation analysis of the TATA box-binding protein (TBP) gene in Russian patients with spinocerebellar ataxia and Huntington disease-like phenotype. Clin Neurol Neurosurg [Internet]. 2022;222:107473. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0303846722003547. Accessed 20 Aug 2022

    Article  PubMed  Google Scholar 

  75. Rossi M, Hamed M, Rodríguez-Antigüedad J, Cornejo-Olivas M, Breza M, Lohmann K, et al. Genotype–phenotype correlations for ATX-TBP (SCA17): mdsgene systematic review. Mov Disord. 2023;38(3):368–77. https://doi.org/10.1002/mds.29278.

    Article  CAS  PubMed  Google Scholar 

  76. Hubner J, Sprenger A, Klein C, Hagenah J, Rambold H, Zuhlke C, et al. Eye movement abnormalities in spinocerebellar ataxia type 17 (SCA17). Neurology. 2007;69(11):1160–8.

    Article  CAS  PubMed  Google Scholar 

  77. Mariotti C, Alpini D, Fancellu R, Soliveri P, Grisoli M, Ravaglia S, et al. Spinocerebellar ataxia type 17 (SCA17): oculomotor phenotype and clinical characterization of 15 Italian patients. J Neurol [Internet]. 2007;254:1538–46. https://doi.org/10.1007/s00415-007-0579-7.

    Article  PubMed  Google Scholar 

  78. Lin P, Zhang D, Xu G, Yan C. Identification of IFRD1 variant in a Han Chinese family with autosomal dominant hereditary spastic paraplegia associated with peripheral neuropathy and ataxia. J Hum Genet. 2018;63(4):521–4.

    Article  CAS  PubMed  Google Scholar 

  79. Schelhaas HJ, van de Warrenburg BPC. Clinical, psychological, and genetic characteristics of spinocerebellar ataxia type 19 (SCA19). Cerebellum. 2005;4(1):51–4.

    Article  CAS  PubMed  Google Scholar 

  80. Chung M-Y, Lu Y-C, Cheng N-C, Soong B-W. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain. 2003;126(Pt 6):1293–9.

    Article  PubMed  Google Scholar 

  81. Storey E, Gardner RJM. Spinocerebellar ataxia type 20. Handb Clin Neurol. 2012;103:567–73.

    Article  PubMed  Google Scholar 

  82. Tilikete C, Desestret V. Hypertrophic olivary degeneration and palatal or oculopalatal tremor. Front Neurol. 2017;8:302.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Knight MA, Gardner RJM, Bahlo M, Matsuura T, Dixon JA, Forrest SM, et al. Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain. 2004;127(Pt 5):1172–81.

    Article  PubMed  Google Scholar 

  84. Storey E, Knight MA, Forrest SM, Gardner RJM. Spinocerebellar ataxia type 20. Cerebellum. 2005;4(1):55–7.

    Article  CAS  PubMed  Google Scholar 

  85. Delplanque J, Devos D, Vuillaume I, De Becdelievre A, Vangelder E, Maurage CA, et al. Slowly progressive spinocerebellar ataxia with extrapyramidal signs and mild cognitive impairment (SCA21). Cerebellum. 2008;7(2):179–83.

    Article  CAS  PubMed  Google Scholar 

  86. Traschütz A, van Gaalen J, Oosterloo M, Vreeburg M, Kamsteeg E-J, Deininger N, et al. The movement disorder spectrum of SCA21 (ATX-TMEM240): 3 novel families and systematic review of the literature. Parkinsonism Relat Disord. 2019;62:215–20.

    Article  PubMed  Google Scholar 

  87. Yahikozawa H, Miyatake S, Sakai T, Uehara T, Yamada M, Hanyu N, et al. A Japanese family of spinocerebellar ataxia type 21: clinical and neuropathological studies. Cerebellum. 2018;17(5):525–30.

    Article  CAS  PubMed  Google Scholar 

  88. Verbeek DS. Spinocerebellar ataxia type 23: a genetic update. Cerebellum. 2009;8(2):104–7.

    Article  CAS  PubMed  Google Scholar 

  89. Liu Y-T, Tang B-S, Wang J-L, Guan W-J, Shen L, Shi Y-T, et al. Spinocerebellar ataxia type 23 is an uncommon SCA subtype in the Chinese Han population. Neurosci Lett. 2012;528(1):51–4.

    Article  CAS  PubMed  Google Scholar 

  90. Jezierska J, Stevanin G, Watanabe H, Fokkens MR, Zagnoli F, Kok J, et al. Identification and characterization of novel PDYN mutations in dominant cerebellar ataxia cases. J Neurol. 2013;260(7):1807–12.

    Article  CAS  PubMed  Google Scholar 

  91. Stevanin G, Bouslam N, Thobois S, Azzedine H, Ravaux L, Boland A, et al. Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol. 2004;55(1):97–104.

    Article  CAS  PubMed  Google Scholar 

  92. Yu G-Y, Howell MJ, Roller MJ, Xie T-D, Gomez CM. Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol. 2005;57(3):349–54.

    Article  CAS  PubMed  Google Scholar 

  93. Groth CL, Berman BD. Spinocerebellar ataxia 27: a review and characterization of an evolving phenotype. Tremor Other Hyperkinet Mov (N Y). 2018;8:534.

    Article  PubMed  Google Scholar 

  94. Brusse E, de Koning I, Maat-Kievit A, Oostra BA, Heutink P, van Swieten JC. Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): a new phenotype. Mov Disord. 2006;21(3):396–401.

    Article  PubMed  Google Scholar 

  95. Strupp M, Maul S, Konte B, Hartmann AM, Giegling I, Wollenteit S, et al. A variation in FGF14 is associated with downbeat nystagmus in a genome-wide association study. Cerebellum. 2020;19(3):348–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mariotti C, Brusco A, Di Bella D, Cagnoli C, Seri M, Gellera C, et al. Spinocerebellar ataxia type 28: a novel autosomal dominant cerebellar ataxia characterized by slow progression and ophthalmoparesis. Cerebellum. 2008;7(2):184–8.

    Article  CAS  PubMed  Google Scholar 

  97. Politi LS, Bianchi Marzoli S, Godi C, Panzeri M, Ciasca P, Brugnara G, et al. MRI evidence of cerebellar and extraocular muscle atrophy differently contributing to eye movement abnormalities in SCA2 and SCA28 diseases. Invest Ophthalmol Vis Sci. 2016;57(6):2714–20.

    Article  CAS  PubMed  Google Scholar 

  98. Cagnoli C, Mariotti C, Taroni F, Seri M, Brussino A, Michielotto C, et al. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22–q11.2. Brain [Internet]. 2006;129(1):235–42. Available from: http://academic.oup.com/brain/article/129/1/235/311787/SCA28-a-novel-form-of-autosomal-dominant. Accessed 20 Aug 2022

    Article  PubMed  Google Scholar 

  99. Zambonin JL, Bellomo A, Ben-Pazi H, Everman DB, Frazer LM, Geraghty MT, et al. Spinocerebellar ataxia type 29 due to mutations in ITPR1: a case series and review of this emerging congenital ataxia. Orphanet J Rare Dis. 2017;12(1):121.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Huang L, Chardon JW, Carter MT, Friend KL, Dudding TE, Schwartzentruber J, et al. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis. 2012;7:67.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Storey E, Bahlo M, Fahey M, Sisson O, Lueck CJ, Gardner RJM. A new dominantly inherited pure cerebellar ataxia, SCA 30. J Neurol Neurosurg Psychiatry. 2009;80(4):408–11.

    Article  CAS  PubMed  Google Scholar 

  102. Nakamura K, Yoshida K, Matsushima A, Shimizu Y, Sato S, Yahikozawa H, et al. Natural history of spinocerebellar ataxia type 31: a 4-year prospective study. Cerebellum. 2017;16(2):518–24.

    Article  CAS  PubMed  Google Scholar 

  103. Adachi T, Kitayama M, Nakano T, Adachi Y, Kato S, Nakashima K. Autopsy case of spinocerebellar ataxia type 31 with severe dementia at the terminal stage. Neuropathology. 2015;35(3):273–9.

    Article  PubMed  Google Scholar 

  104. Beaudin M, Sellami L, Martel C, Touzel-Deschênes L, Houle G, Martineau L, et al. Characterization of the phenotype with cognitive impairment and protein mislocalization in SCA34. Neurol Genet. 2020;6(2):e403.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ozaki K, Ansai A, Nobuhara K, Araki T, Kubodera T, Ishii T, et al. Prevalence and clinicoradiological features of spinocerebellar ataxia type 34 in a Japanese ataxia cohort. Parkinsonism Relat Disord. 2019;65:238–42.

    Article  PubMed  Google Scholar 

  106. Ozaki K, Irioka T, Uchihara T, Yamada A, Nakamura A, Majima T, et al. Neuropathology of SCA34 showing widespread oligodendroglial pathology with vacuolar white matter degeneration: a case study. Acta Neuropathol Commun [Internet]. 2021;9(1):172. https://doi.org/10.1186/s40478-021-01272-w.

    Article  CAS  PubMed  Google Scholar 

  107. Ozaki K, Doi H, Mitsui J, Sato N, Iikuni Y, Majima T, et al. A novel mutation in ELOVL4 leading to spinocerebellar ataxia (SCA) with the hot cross bun sign but lacking erythrokeratodermia: a broadened spectrum of SCA34. JAMA Neurol. 2015;72(7):797–805.

    Article  PubMed  Google Scholar 

  108. Lin C-C, Gan S-R, Gupta D, Alaedini A, Green PH, Kuo S-H. Hispanic spinocerebellar ataxia type 35 (SCA35) with a novel frameshift mutation. Cerebellum. 2019;18(2):291–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Guo Y-C, Lin J-J, Liao Y-C, Tsai P-C, Lee Y-C, Soong B-W. Spinocerebellar ataxia 35: novel mutations in TGM6 with clinical and genetic characterization. Neurology. 2014;83(17):1554–61.

    Article  CAS  PubMed  Google Scholar 

  110. Wang Q, Zhang C, Liu S, Liu T, Ni R, Liu X, et al. Long-read sequencing identified intronic (GGCCTG)n expansion in NOP56 in one SCA36 family and literature review. Clin Neurol Neurosurg [Internet]. 2022;223:107503. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0303846722003845. Accessed 20 Aug 2022

    Article  PubMed  Google Scholar 

  111. Aguiar P, Pardo J, Arias M, Quintáns B, Fernández-Prieto M, Martínez-Regueiro R, et al. PET and MRI detection of early and progressive neurodegeneration in spinocerebellar ataxia type 36. Mov Disord [Internet]. 2017;32(2):264–73. https://doi.org/10.1002/mds.26854.

    Article  CAS  PubMed  Google Scholar 

  112. Lopez S, He F. Spinocerebellar ataxia 36: from mutations toward therapies. Front Genet [Internet]. 2022;4:13. https://doi.org/10.3389/fgene.2022.837690/full.

    Article  Google Scholar 

  113. Xie Y, Chen Z, Long Z, Chen R-T, Jiang Y-Z, Liu M-J, et al. Identification of the largest SCA36 pedigree in Asia: with multimodel neuroimaging evaluation for the first time. The Cerebellum [Internet]. 2022;21(3):358–67. https://doi.org/10.1007/s12311-021-01304-0.

    Article  PubMed  Google Scholar 

  114. Garcia-Murias M, Quintans B, Arias M, Seixas AI, Cacheiro P, Tarrio R, et al. “Costa da Morte” ataxia is spinocerebellar ataxia 36: clinical and genetic characterization. Brain. 2012;135(5):1423–35. https://doi.org/10.1093/brain/aws069.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Arias M, García-Murias M, Sobrido MJ. Spinocerebellar ataxia 36 (SCA36): «Costa da Morte ataxia». Neurologia. 2017;32(6):386–93.

    Article  CAS  PubMed  Google Scholar 

  116. Loureiro JR, Oliveira CL, Mota C, Castro AF, Costa C, Loureiro JL, et al. Mutational mechanism for DAB1 (ATTTC) n insertion in SCA37: ATTTT repeat lengthening and nucleotide substitution. Hum Mutat [Internet]. 2019;40(4):404–12. https://doi.org/10.1002/humu.23704.

    Article  CAS  PubMed  Google Scholar 

  117. Rosenbohm A, Pott H, Thomsen M, Rafehi H, Kaya S, Szymczak S, et al. Familial cerebellar ataxia and amyotrophic lateral sclerosis/frontotemporal dementia with DAB1 and C9ORF72 repeat expansions: an 18-year study. Mov Disord. 2022;37(12):2427–39. https://doi.org/10.1002/mds.29221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Corral-Juan M, Serrano-Munuera C, Rábano A, Cota-González D, Segarra-Roca A, Ispierto L, et al. Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37. Brain. 2018;141(7):1981–97.

    Article  PubMed  Google Scholar 

  119. Serrano-Munuera C, Corral-Juan M, Stevanin G, San Nicolás H, Roig C, Corral J, et al. New subtype of spinocerebellar ataxia with altered vertical eye movements mapping to chromosome 1p32. JAMA Neurol. 2013;70(6):764–71.

    Article  PubMed  Google Scholar 

  120. Seixas AI, Loureiro JR, Costa C, Ordóñez-Ugalde A, Marcelino H, Oliveira CL, et al. A pentanucleotide ATTTC repeat insertion in the non-coding region of DAB1, mapping to SCA37, causes spinocerebellar ataxia. Am J Hum Genet. 2017;101(1):87–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Di Gregorio E, Borroni B, Giorgio E, Lacerenza D, Ferrero M, Lo Buono N, et al. ELOVL5 mutations cause spinocerebellar ataxia 38. Am J Hum Genet. 2014;95(2):209–17.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Borroni B, Di Gregorio E, Orsi L, Vaula G, Costanzi C, Tempia F, et al. Clinical and neuroradiological features of spinocerebellar ataxia 38 (SCA38). Parkinsonism Relat Disord. 2016;28:80–6.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Gazulla J, Orduna-Hospital E, Benavente I, Rodríguez-Valle A, Osorio-Caicedo P, Alvarez-de Andrés S, et al. Contributions to the study of spinocerebellar ataxia type 38 (SCA38). J Neurol. 2020;267:2288–95.

    Article  CAS  PubMed  Google Scholar 

  124. Johnson JO, Stevanin G, van de Leemput J, Hernandez DG, Arepalli S, Forlani S, et al. A 7.5-Mb duplication at chromosome 11q21-11q22.3 is associated with a novel spastic ataxia syndrome. Mov Disord [Internet]. 2015;30(2):262–6. https://doi.org/10.1002/mds.26059.

    Article  CAS  PubMed  Google Scholar 

  125. Tsoi H, Yu ACS, Chen ZS, Ng NKN, Chan AYY, Yuen LYP, et al. A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia. J Med Genet. 2014;51(9):590–5.

    Article  CAS  PubMed  Google Scholar 

  126. Ngo K, Aker M, Petty LE, Chen J, Cavalcanti F, Nelson AB, et al. Expanding the global prevalence of spinocerebellar ataxia type 42. Neurol Genet. 2018;4(3):e232.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kimura M, Yabe I, Hama Y, Eguchi K, Ura S, Tsuzaka K, et al. SCA42 mutation analysis in a case series of Japanese patients with spinocerebellar ataxia. J Hum Genet. 2017;62(9):857–9.

    Article  CAS  PubMed  Google Scholar 

  128. Depondt C, Donatello S, Rai M, Wang FC, Manto M, Simonis N, et al. MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43). Neurol Genet. 2016;2(5):e94.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Watson LM, Bamber E, Schnekenberg RP, Williams J, Bettencourt C, Lickiss J, et al. Dominant mutations in GRM1 cause spinocerebellar ataxia type 44. Am J Hum Genet. 2017;101(3):451–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Parodi L, Coarelli G, Stevanin G, Brice A, Durr A. Hereditary ataxias and paraparesias: clinical and genetic update. Curr Opin Neurol. 2018;31(4):462–71.

    Article  PubMed  Google Scholar 

  131. Ganguly J, Mukherjee S, Basu P, Mondal B, Chatterjee K, Roy A, et al. Think of SCA45 in late-onset familial ataxias: the first report from the indian subcontinent with a novel variant. Mov Disord Clin Pract [Internet]. 2022 Nov;9(8):1140–3. https://doi.org/10.1002/mdc3.13580.

    Article  PubMed  Google Scholar 

  132. Tonholo Silva TY, Rosa ABR, Quaio CR, Verbeek D, Pedroso JL, Barsottini O. Does SCA45 cause very late-onset pure cerebellar ataxia? Neurol Genet [Internet]. 2021 Jun;7(3):e581. https://doi.org/10.1212/NXG.0000000000000581.

    Article  PubMed  Google Scholar 

  133. Lai K-L, Liao Y-C, Tsai P-C, Hsiao C-T, Soong B-W, Lee Y-C. Investigating PUM1 mutations in a Taiwanese cohort with cerebellar ataxia. Parkinsonism Relat Disord. 2019;66:220–3.

    Article  PubMed  Google Scholar 

  134. Gennarino VA, Palmer EE, McDonell LM, Wang L, Adamski CJ, Koire A, et al. A mild PUM1 mutation is associated with adult-onset ataxia, whereas haploinsufficiency causes developmental delay and seizures. Cell. 2018;172(5):924–936.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. De Michele G, Lieto M, Galatolo D, Salvatore E, Cocozza S, Barghigiani M, et al. Spinocerebellar ataxia 48 presenting with ataxia associated with cognitive, psychiatric, and extrapyramidal features: a report of two Italian families. Parkinsonism Relat Disord. 2019;65:91–6.

    Article  PubMed  Google Scholar 

  136. Palvadeau R, Kaya-Güleç ZE, Şimşir G, Vural A, Öztop-Çakmak Ö, Genç G, et al. Cerebellar cognitive-affective syndrome preceding ataxia associated with complex extrapyramidal features in a Turkish SCA48 family. Neurogenetics. 2020;21(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  137. Lieto M, Riso V, Galatolo D, De Michele G, Rossi S, Barghigiani M, et al. The complex phenotype of spinocerebellar ataxia type 48 in eight unrelated Italian families. Eur J Neurol. 2020;27(3):498–505.

    Article  CAS  PubMed  Google Scholar 

  138. Cocozza S, Pontillo G, De Michele G, Perillo T, Guerriero E, Ugga L, et al. The “crab sign”: an imaging feature of spinocerebellar ataxia type 48. Neuroradiology. 2020;62:1095–103.

    Article  PubMed  Google Scholar 

  139. Silver MR, Sethi KD, Mehta SH, Nichols FT, Morgan JC. Case report of optic atrophy in dentatorubropallidoluysian atrophy (DRPLA). BMC Neurol. 2015;15:260.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Muñoz E, Milà M, Sánchez A, Latorre P, Ariza A, Codina M, et al. Dentatorubropallidoluysian atrophy in a spanish family: a clinical, radiological, pathological, and genetic study. J Neurol Neurosurg Psychiatry. 1999;67(6):811–4.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Rocha Cabrero F, De Jesus O. Dentatorubral pallidoluysian atrophy. Treasure Island (FL); 2022.

    Google Scholar 

  142. Vinton A, Fahey MC, O’Brien TJ, Shaw J, Storey E, Gardner RJM, et al. Dentatorubral-pallidoluysian atrophy in three generations, with clinical courses from nearly asymptomatic elderly to severe juvenile, in an Australian family of Macedonian descent. Am J Med Genet A. 2005;136(2):201–4.

    Article  PubMed  Google Scholar 

  143. Gordon N. Episodic ataxia and channelopathies. Brain Dev. 1998;20(1):9–13.

    Article  CAS  PubMed  Google Scholar 

  144. Graves TD, Griggs RC, Bundy BN, Jen JC, Baloh RW, Hanna MG, et al. Episodic ataxia type 1: natural history and effect on quality of life. The Cerebellum. 2022:1–9.

  145. Choi J-H, Oh EH, Choi SY, Kim HJ, Lee SK, Choi JY, et al. Vestibular impairments in episodic ataxia type 2. J Neurol. 2022;269(5):2687–95.

    Article  PubMed  Google Scholar 

  146. Anheim M, Tranchant C, Koenig M. The autosomal recessive cerebellar ataxias. N Engl J Med. 2012;366(7):636–46.

    Article  CAS  PubMed  Google Scholar 

  147. Gama MTD, Braga-Neto P, Rangel DM, Godeiro C, Alencar R, Embiruçu EK, et al. Autosomal recessive cerebellar ataxias in South America: a multicenter study of 1338 patients. Mov Disord [Internet]. 2022 May 4;37(8):1773–4. https://doi.org/10.1002/mds.29046.

    Article  PubMed  Google Scholar 

  148. Al-Din AS, Al-Kurdi A, Al-Salem MK, Al-Nassar KE, Al-Zuhair A, Rudwan MA, et al. Autosomal recessive ataxia, slow eye movements, dementia and extrapyramidal disturbances. J Neurol Sci. 1990;96(2–3):191–205.

    Article  CAS  PubMed  Google Scholar 

  149. Vankan P. Prevalence gradients of Friedreich’s ataxia and R1b haplotype in Europe co-localize, suggesting a common Palaeolithic origin in the Franco-Cantabrian ice age refuge. J Neurochem. 2013;126:11–20.

    Article  CAS  PubMed  Google Scholar 

  150. Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science (80- ). 1996 Mar;271(5254):1423–7.

    Article  CAS  Google Scholar 

  151. Harding AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain. 1981;104(3):589–620.

    Article  CAS  PubMed  Google Scholar 

  152. Lecocq C, Charles P, Azulay J-P, Meissner W, Rai M, N’Guyen K, et al. Delayed-onset Friedreich’s ataxia revisited. Mov Disord. 2016;31(1):62–9.

    Article  PubMed  Google Scholar 

  153. Santos R, Lefevre S, Sliwa D, Seguin A, Camadro J-M, Lesuisse E. Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal. 2010;13(5):651–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Parkinson MH, Boesch S, Nachbauer W, Mariotti C, Giunti P. Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J Neurochem. 2013;126(Suppl):103–17.

    Article  CAS  PubMed  Google Scholar 

  155. Spieker S, Schulz JB, Petersen D, Fetter M, Klockgether T, Dichgans J. Fixation instability and oculomotor abnormalities in Friedreich’s ataxia. J Neurol. 1995;242(8):517–21.

    Article  CAS  PubMed  Google Scholar 

  156. Bogdanova-Mihaylova P, Plapp HM, Chen H, Early A, Cassidy L, Walsh RA, et al. Longitudinal assessment using optical coherence tomography in patients with Friedreich’s ataxia. Tomography. 2021;7(4):915–31.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Fahey MC, Cremer PD, Aw ST, Millist L, Todd MJ, White OB, et al. Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia. Brain. 2008;131(Pt 4):1035–45.

    Article  PubMed  Google Scholar 

  158. Furman JM, Perlman S, Baloh RW. Eye movements in Friedreich’s ataxia. Arch Neurol. 1983;40(6):343–6.

    Article  CAS  PubMed  Google Scholar 

  159. Bhidayasiri R, Perlman SL, Pulst S-M, Geschwind DH. Late-onset Friedreich ataxia. Arch Neurol. 2005;62:1865.

    Article  PubMed  Google Scholar 

  160. Perlman S, Becker-Catania S, Gatti RA. Ataxia-telangiectasia: diagnosis and treatment. Semin Pediatr Neurol. 2003;10(3):173–82.

    Article  PubMed  Google Scholar 

  161. Chun HH, Gatti RA. Ataxia–telangiectasia, an evolving phenotype. DNA Repair (Amst). 2004;3(8–9):1187–96.

    Article  CAS  PubMed  Google Scholar 

  162. Crawford TO. Ataxia telangiectasia. Semin Pediatr Neurol. 1998;5(4):287–94.

    Article  PubMed  Google Scholar 

  163. Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford TO, Straumann D, et al. Ataxia telangiectasia: a “disease model” to understand the cerebellar control of vestibular reflexes. J Neurophysiol. 2011;105(6):3034–41.

    Article  PubMed  Google Scholar 

  164. Lewis RF, Lederman HM, Crawford TO. Ocular motor abnormalities in ataxia telangiectasia. Ann Neurol. 1999;46(3):287–95.

    Article  CAS  PubMed  Google Scholar 

  165. Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford TO, Straumann D, et al. Gaze fixation deficits and their implication in ataxia-telangiectasia. J Neurol Neurosurg Psychiatry. 2009;80(8):858–64.

    Article  CAS  PubMed  Google Scholar 

  166. Cogan DG. A type of congenital ocular motor apraxia presenting jerky head movements*. Am J Ophthalmol. 1953;36(4):433–41.

    Article  CAS  PubMed  Google Scholar 

  167. Harris CM, Shawkat F, Russell-Eggitt I, Wilson J, Taylor D. Intermittent horizontal saccade failure (‘ocular motor apraxia’) in children. Br J Ophthalmol. 1996;80(2):151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Onodera O. Spinocerebellar ataxia with ocular motor apraxia and DNA repair. Neuropathology. 2006;26(4):361–7.

    Article  PubMed  Google Scholar 

  169. Federighi P, Ramat S, Rosini F, Pretegiani E, Federico A, Rufa A. Characteristic eye movements in ataxia-telangiectasia-like disorder: an explanatory hypothesis. Front Neurol. 2017;8:596.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Khan AO, Oystreck DT, Koenig M, Salih MA. Ophthalmic features of ataxia telangiectasia-like disorder. J AAPOS Off Publ Am Assoc Pediatr Ophthalmol Strabismus. 2008;12(2):186–9.

    Google Scholar 

  171. Moreira M-C, Barbot C, Tachi N, Kozuka N, Uchida E, Gibson T, et al. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet. 2001;29(2):189–93.

    Article  CAS  PubMed  Google Scholar 

  172. Sano Y, Date H, Igarashi S, Onodera O, Oyake M, Takahashi T, et al. Aprataxin, the causative protein for EAOH is a nuclear protein with a potential role as a DNA repair protein. Ann Neurol. 2004;55(2):241–9.

    Article  CAS  PubMed  Google Scholar 

  173. Sekijima Y, Ohara S, Nakagawa S, Tabata K, Yoshida K, Ishigame H, et al. Hereditary motor and sensory neuropathy associated with cerebellar atrophy (HMSNCA): clinical and neuropathological features of a Japanese family. J Neurol Sci. 1998;158(1):30–7.

    Article  CAS  PubMed  Google Scholar 

  174. Le Ber I, Moreira M-C, Rivaud-Pechoux S, Chamayou C, Ochsner F, Kuntzer T, et al. Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain. 2003;126(Pt 12):2761–72.

    Article  PubMed  Google Scholar 

  175. Wolf NI, Koenig M. Progressive cerebellar atrophy: hereditary ataxias and disorders with spinocerebellar degeneration. Handb Clin Neurol. 2013;113:1869–78.

    Article  PubMed  Google Scholar 

  176. Anheim M, Monga B, Fleury M, Charles P, Barbot C, Salih M, et al. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain. 2009;132:2688–98.

    Article  CAS  PubMed  Google Scholar 

  177. Le Ber I, Brice A, Dürr A. New autosomal recessive cerebellar ataxias with oculomotor apraxia. Curr Neurol Neurosci Rep. 2005;5(5):411–7.

    Article  PubMed  Google Scholar 

  178. Palau F, Espinós C. Autosomal recessive cerebellar ataxias. Orphanet J Rare Dis. 2006;1:47.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Patterson MC, Hendriksz CJ, Walterfang M, Sedel F, Vanier MT, Wijburg F. Recommendations for the diagnosis and management of Niemann-Pick disease type C: an update. Mol Genet Metab. 2012;106(3):330–44.

    Article  CAS  PubMed  Google Scholar 

  180. Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science (80- ). 1997 Jul;277(5323):228–31.

    Article  CAS  Google Scholar 

  181. Devaraj R, Mahale RR, Sindhu DM, Stezin A, Kamble N, Holla VV, et al. Spectrum of movement disorders in Niemann-Pick disease type C. Tremor Other Hyperkinet Mov (N Y). 2022;12:28.

    Article  PubMed  Google Scholar 

  182. Tang Y, Li H, Liu J-P. Niemann-Pick disease type C: from molecule to clinic. Clin Exp Pharmacol Physiol. 2010;37(1):132–40.

    Article  CAS  PubMed  Google Scholar 

  183. Rottach KG, Von Maydell RD, Das VE, Zivotofsky AZ, Discenna AO, Gordon JL, et al. Evidence for independent feedback control of horizontal and vertical saccades from Niemann-Pick type C disease. Vision Res. 1997;37(24):3627–38.

    Article  CAS  PubMed  Google Scholar 

  184. Solomon D, Winkelman AC, Zee DS, Gray L, Büttner-Ennever J. Niemann-Pick type C disease in two affected sisters: ocular motor recordings and brain-stem neuropathology. Ann N Y Acad Sci. 2005 Apr;1039(1):436–45.

    Article  PubMed  Google Scholar 

  185. Abel LA, Walterfang M, Fietz M, Bowman EA, Velakoulis D. Saccades in adult Niemann-Pick disease type C reflect frontal, brainstem, and biochemical deficits. Neurology. 2009;72(12):1083–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronak Rashedi.

Ethics declarations

Ethical Compliance Statement

This study has been approved by Shahid Beheshti Medical University research ethics committee, and was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1:

Table 1 A summary of the onset age, mutations, pathology, and ocular movement abnormalities in cerebellar ataxias (DOCX 206 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salari, M., Etemadifar, M., Rashedi, R. et al. A Review of Ocular Movement Abnormalities in Hereditary Cerebellar Ataxias. Cerebellum 23, 702–721 (2024). https://doi.org/10.1007/s12311-023-01554-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-023-01554-0

Keywords

Navigation