Skip to main content

Advertisement

Log in

The Pathophysiology and Clinical Manifestations of Spinocerebellar Ataxia Type 6

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 20 November 2020

Abstract

Spinocerebellar ataxias (SCA) constitute of a group of degenerative and progressive disorders that can be identified on a molecular and cellular basis. Along with histological changes, the clinical presentation of SCA differs between subtypes. In addition to basic cerebellar dysfunction symptoms, patients with SCA develop gait ataxia, dysphagia, dysarthria, oculomotor disturbances, pyramidal and extrapyramidal disease signs, rigidity, bradycardia, sensory deficits, and mild cognitive and executive function decline. MRI scans have confirmed reduction in mass of frontal, temporal, and parietal portions of the brain along with the cerebellar peduncles, brainstem, and cranial nerve III. Clinically, these damages manifest as decline in cognition and problems with speech, contemplation, and vision. This review article compares the most prevalent subtypes of SCA based on genetic background, pathogenesis, neurological manifestations, other presenting symptoms, and diagnostic workup. Further goals of research in this field should be directed towards a cure for SCA, which currently does not exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. OMIM Phenotypic Series - PS164400 - Spinocerebellar Ataxias [Internet]. [cited 2019 Oct 29]. Available from: https://omim.org/phenotypicSeries/PS164400

  2. Soong B, Liu R, Wu L, Lu Y, Lee H. Metabolic characterization of spinocerebellar ataxia type 6. Arch Neurol. 2001;58(2):300–4.

    Article  CAS  Google Scholar 

  3. Gierga K, Schelhaas HJ, Brunt ER, Seidel K, Scherzed W, Egensperger R, et al. Spinocerebellar ataxia type 6 (SCA6): neurodegeneration goes beyond the known brain predilection sites. Neuropathol Appl Neurobiol. 2009;35(5):515–27.

  4. Schulz JB, Borkert J, Wolf S, Schmitz-Hübsch T, Rakowicz M, Mariotti C, et al. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. NeuroImage. 2010;49(1):158–68.

  5. Seidel K, Siswanto S, Brunt ERP, den Dunnen W, Korf H-W, Rüb U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol (Berl). 2012;124(1):1–21.

    Article  CAS  Google Scholar 

  6. Frontali M. Spinocerebellar ataxia type 6: channelopathy or glutamine repeat disorder? Brain Res Bull. 2001;56(3):227–31.

    Article  CAS  Google Scholar 

  7. Ishikawa K, Owada K, Ishida K, Fujigasaki H, Shun Li M, Tsunemi T, et al. Cytoplasmic and nuclear polyglutamine aggregates in SCA6 Purkinje cells. Neurology. 2001;56(12):1753–6.

  8. Rüb U, Brunt ER, Petrasch-Parwez E, Schöls L, Theegarten D, Auburger G, et al. Degeneration of ingestion-related brainstem nuclei in spinocerebellar ataxia type 2, 3, 6 and 7. Neuropathol Appl Neurobiol. 2006;32(6):635–49.

    Article  Google Scholar 

  9. Tsou W-L, Qiblawi SH, Hosking RR, Gomez CM, Todi SV. Polyglutamine length-dependent toxicity from α1ACT in Drosophila models of spinocerebellar ataxia type 6. Biol Open. 2016;5(12):1770–5.

    Article  CAS  Google Scholar 

  10. Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci. 2007;30(1):575–621.

    Article  CAS  Google Scholar 

  11. Hillman D, Chen S, Aung TT, Cherksey B, Sugimori M, Llinás RR. Localization of P-type calcium channels in the central nervous system. Proc Natl Acad Sci U S A. 1991;88(16):7076–80.

    Article  CAS  Google Scholar 

  12. Kordasiewicz HB, Thompson RM, Clark HB, Gomez CM. C-termini of P/Q-type Ca 2+ channel α1A subunits translocate to nuclei and promote polyglutamine-mediated toxicity. Hum Mol Genet. 2006;15(10):1587–99.

    Article  CAS  Google Scholar 

  13. Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU. Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci U S A. 2002;99(Suppl 4):16412–8.

    Article  CAS  Google Scholar 

  14. Reference GH. CACNA1A gene [Internet]. Genetics Home Reference. [cited 2020 Jan 13]. Available from: https://ghr.nlm.nih.gov/gene/CACNA1A

  15. Wang X, Wang H, Xia Y, Jiang H, Shen L, Wang S, et al. A neuropathological study at autopsy of early onset spinocerebellar ataxia 6. J Clin Neurosci. 2010;17(6):751–5.

  16. Ishikawa K, Watanabe M, Yoshizawa K, Fujita T, Iwamoto H, Yoshizawa T, et al. Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6). J Neurol Neurosurg Psychiatry. 1999;67(1):86–9.

    Article  CAS  Google Scholar 

  17. Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, et al. Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol. 1997;42(6):933–50.

  18. Riva A, Bradac GB. Primary cerebellar and spino-cerebellar ataxia an MRI study on 63 cases. J Neuroradiol J Neuroradiol. 1995;22:71–6.

    CAS  PubMed  Google Scholar 

  19. Nakagawa N, Katayama T, Makita Y, Kuroda K, Aizawa H, Kikuchi K. A case of spinocerebellar ataxia type 6 mimicking olivopontocerebellar atrophy. Neuroradiology. 1999;41(7):501–3.

    Article  CAS  Google Scholar 

  20. Elliott MA, Peroutka SJ, Welch S, May EF. Familial hemiplegic migraine, nystagmus, and cerebellar atrophy. Ann Neurol. 1996;39(1):100–6.

    Article  CAS  Google Scholar 

  21. Murata Y, Kawakami H, Yamaguchi S, Nishimura M, Kohriyama T, Ishizaki F, et al. Characteristic magnetic resonance imaging findings in spinocerebellar ataxia 6. Arch Neurol. 1998;55(10):1348–52.

  22. Grieve KL, Acuña C, Cudeiro J. The primate pulvinar nuclei: vision and action. Trends Neurosci. 2000;23(1):35–9.

    Article  CAS  Google Scholar 

  23. Shipp S. The functional logic of cortico-pulvinar connections. Philos Trans R Soc B Biol Sci. 2003;358(1438):1605–24.

    Article  CAS  Google Scholar 

  24. Arend I, Machado L, Ward R, McGrath M, Ro T, Rafal RD. Chapter 5.15 - The role of the human pulvinar in visual attention and action: evidence from temporal-order judgment, saccade decision, and antisaccade tasks. In: Kennard C, Leigh RJ, editors. Progress in Brain Research [Internet]: Elsevier; 2008. [cited 2019 Oct 21]. p. 475–83. (Using Eye Movements as an Experimental Probe of Brain Function; vol. 171). Available from: http://www.sciencedirect.com/science/article/pii/S0079612308006699.

  25. Fujioka S, Sundal C, Wszolek ZK. Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis. 2013;8:14.

    Article  Google Scholar 

  26. Stevanin G, Dürr A, David G, Didierjean O, Cancel G, Rivaud S, et al. Clinical and molecular features of spinocerebellar ataxia type 6. Neurology. 1997;49(5):1243–6.

  27. Casey HL, Gomez CM. Spinocerebellar ataxia type 6. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Stephens K, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1993. [cited 2020 Jan 13]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1140/.

    Google Scholar 

  28. Isono C, Hirano M, Sakamoto H, Ueno S, Kusunoki S, Nakamura Y. Progression of dysphagia in spinocerebellar ataxia type 6. Dysphagia. 2017;32(3):420–6.

    Article  Google Scholar 

  29. Abdulmassih EM d S, Teive HAG, Santos RS. The evaluation of swallowing in patients with spinocerebellar ataxia and oropharyngeal dysphagia: a comparison study of videofluoroscopic and sonar doppler. Int Arch Otorhinolaryngol. 2013;17(1):66–73.

    PubMed  PubMed Central  Google Scholar 

  30. Vogel AP, Keage MJ, Johansson K, Schalling E. Treatment for dysphagia (swallowing difficulties) in hereditary ataxia. Cochrane Database Syst Rev [Internet]. 2015;11 [cited 2019 Oct 21] Available from: http://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD010169.pub2/full.

  31. Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3(5):291–304.

    Article  Google Scholar 

  32. Comprehensive ataxia repeat expansion panel (SCA 1, 2, 3, 6, 7, 8, 10, 12, 17, 36, DRPLA & FRDA) - Tests - GTR - NCBI [Internet]. [cited 2020 Jan 13]. Available from: https://www.ncbi.nlm.nih.gov/gtr/tests/567650/overview/

  33. Miyazaki Y, Du X, Muramatsu S, Gomez CM. An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron. Sci Transl Med. 2016;8(347):347ra94–4.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zubir Rentiya: Article idea, literature search, article draft

Robert Hutnik: Literature search, article critical revision

Yolunna Q Mekkam: Literature search, article critical revision

Junun Bae: Article idea, literature search, article draft

Corresponding author

Correspondence to Zubir Rentiya.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rentiya, Z., Hutnik, R., Mekkam, Y.Q. et al. The Pathophysiology and Clinical Manifestations of Spinocerebellar Ataxia Type 6. Cerebellum 19, 459–464 (2020). https://doi.org/10.1007/s12311-020-01120-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01120-y

Keywords

Navigation