Skip to main content
Log in

Past and Present of Eye Movement Abnormalities in Ataxia-Telangiectasia

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Ataxia-telangiectasia is the second most common autosomal recessive hereditary ataxia, with an estimated incidence of 1 in 100,000 births. Besides ataxia and ocular telangiectasias, eye movement abnormalities have long been associated with this disorder and is frequently present in almost all patients. A handful of studies have described the phenomenology of ocular motor deficits in ataxia-telangiectasia. Contemporary literature linked their physiology to cerebellar dysfunction and secondary abnormalities at the level of brainstem. These studies, while providing a proof of concept of ocular motor physiology in disease, i.e., ataxia-telangiectasia, also advanced our understanding of how the cerebellum works. Here, we will summarize the clinical abnormalities seen with ataxia-telangiectasia in each subtype of eye movements and subsequently describe the underlying pathophysiology. Finally, we will review how these deficits are linked to abnormal cerebellar function and how it allows better understanding of the cerebellar physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT. The incidence and gene frequency of ataxia-telangiectasia A-T in the United States. Am J Hum Genet. 1986;39(5):573–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jayadev S, Bird TD. Hereditary ataxias: overview. Genet Med. 2013;15(9):673–83.

    Article  CAS  PubMed  Google Scholar 

  3. Boder E, Sedgwick RP. Ataxia-Telangiectasia A-T: a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics. 1958;21(4):526–54.

    CAS  PubMed  Google Scholar 

  4. McFarlin DE, Strober W, Waldmann TA. Ataxia-telangiectasia A-T. Medicine (Baltimore). 1972;51(4):281–314.

    Article  CAS  Google Scholar 

  5. Biemond A. Paleo cerebellar atrophy with extrapyramidal manifestations in association with bronchiectasis and telangiectasia of the conjunctiva bulbi as a familial syndrome. Van Bogaert Radermecker J Eds Proc First Int Congr. 1957;206.

  6. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268(5218):1749–53.

    Article  CAS  PubMed  Google Scholar 

  7. Byrd PJ, McConville CM, Cooper P, Parkhill J, Stankovic T, McGuire GM, et al. Mutations revealed by sequencing the 5′ half of the gene for ataxia telangiectasia. Hum Mol Genet. 1996;5(1):145–9.

    Article  CAS  PubMed  Google Scholar 

  8. Moin M, Aghamohammadi A, Kouhi A, Tavassoli S, Rezaei N, Ghaffari S-R, et al. Ataxia-telangiectasia A-T in Iran: clinical and laboratory features of 104 patients. Pediatr Neurol. 2007;37(1):21–8.

    Article  PubMed  Google Scholar 

  9. Smith JL, Cogan DG. Ataxia-Telangiectasia A-T. AMA Arch Ophthalmol. 1959;62(3):364–9.

    Article  CAS  Google Scholar 

  10. Cogan DG, Chu FC, Reingold D, Barranger J. Ocular motor signs in some metabolic diseases. Arch Ophthalmol. 1981;99(10):1802–8.

    Article  CAS  PubMed  Google Scholar 

  11. Federighi P, Ramat S, Rosini F, Pretegiani E, Federico A, Rufa A. Characteristic eye movements in ataxia-telangiectasia-like disorder: an explanatory hypothesis. Front Neurol. 2017;8:596.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hyams SW, Reisner SH, Neumann E. The eye signs in ataxia-telangiectasia A-T. Am J Ophthalmol. 62(6):1118–24.

  13. Boder E, Sedgwick RP. Ataxia telangiectasia: a review of 150 cases. Intern Cong Ment Retard. 1964.

  14. Lewis RF, Lederman HM, Crawford TO. Ocular motor abnormalities in ataxia telangiectasia. Ann Neurol. 1999;46(3):287–95.

    Article  CAS  PubMed  Google Scholar 

  15. Baloh RW, Yee RD, Boder E. Eye movements in ataxia-telangiectasia. Neurology. 1978;28(11):1099–104.

    Article  CAS  PubMed  Google Scholar 

  16. Harris CM, Shawkat F, Russell-Eggitt I, Wilson J, Taylor D. Intermittent horizontal saccade failure (‘ocular motor apraxia’) in children. Br J Ophthalmol. 1996;80(2):151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zee DS, Yee RD, Singer HS. Congenital ocular motor apraxia. Brain J Neurol. 1977;100(3):581–99.

    Article  CAS  Google Scholar 

  18. Reed H, Israels S. Congenital ocular motor apraxia: a form of horizontal gaze palsy. Br J Ophthalmol. 1956;40(7):444–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Riopel DA. Congenital ocular motor apraxia* *from the division of ophthalmology, College of Medicine, University of Florida. Am J Ophthalmol. 1963;55(3):511–4.

    Article  CAS  PubMed  Google Scholar 

  20. ROBLES J. Congenital ocular motor apraxia in identical twins. Arch Ophthalmol. 1966;75(6):746–9.

    Article  CAS  PubMed  Google Scholar 

  21. Orrison WW, Robertson WC. Congenital ocular motor apraxia: a possible disconnection syndrome. Arch Neurol. 1979;36(1):29–31.

    Article  CAS  PubMed  Google Scholar 

  22. Leigh RJ, Zee DS. The neurology of eye movements: Oxford University Press; 2015. 1137 p

  23. Van Gisbergen JA, Robinson DA, Gielen S. A quantitative analysis of generation of saccadic eye movements by burst neurons. J Neurophysiol. 1981;45(3):417–42.

    Article  PubMed  Google Scholar 

  24. Hepp K, Henn V. Spatio-temporal recoding of rapid eye movement signals in the monkey paramedian pontine reticular formation (PPRF). Exp Brain Res. 1983;52(1):105–20.

    Article  CAS  PubMed  Google Scholar 

  25. Henn V, Hepp K, Vilis T. Rapid eye movement generation in the primate. Physiology, pathophysiology, and clinical implications. Rev Neurol (Paris). 1989;145(8–9):540–5.

    CAS  Google Scholar 

  26. Ramat S, Leigh RJ, Zee DS, Optican LM. Ocular oscillations generated by coupling of brainstem excitatory and inhibitory saccadic burst neurons. Exp Brain Res. 2005;160(1):89–106.

    Article  PubMed  Google Scholar 

  27. Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford T, Straumann D, et al. Gaze fixation deficits and their implication in ataxia-telangiectasia A-T. J Neurol Neurosurg Psychiatry. 2009;80(8):858–64.

    Article  CAS  PubMed  Google Scholar 

  28. Shook BL, Schlag-Rey M, Schlag J. Direct projection from the supplementary eye field to the nucleus raphe interpositus. Exp Brain Res. 1988;73(1):215–8.

    Article  CAS  PubMed  Google Scholar 

  29. Stanton GB, Goldberg ME, Bruce CJ. Frontal eye field efferents in the macaque monkey: I. subcortical pathways and topography of striatal and thalamic terminal fields. J Comp Neurol. 1988;271(4):473–92.

    Article  CAS  PubMed  Google Scholar 

  30. Noda H, Sugita S, Ikeda Y. Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol. 1990;302(2):330–48.

    Article  CAS  PubMed  Google Scholar 

  31. Büttner-Ennever JA, Horn AK, Henn V, Cohen B. Projections from the superior colliculus motor map to omnipause neurons in monkey. J Comp Neurol. 1999;413(1):55–67.

    Article  PubMed  Google Scholar 

  32. Gandhi NJ, Keller EL. Spatial distribution and discharge characteristics of superior colliculus neurons antidromically activated from the omnipause region in monkey. J Neurophysiol. 1997;78(4):2221–5.

    Article  CAS  PubMed  Google Scholar 

  33. Gandhi NJ, Keller EL. Activity of the brain stem omnipause neurons during saccades perturbed by stimulation of the primate superior colliculus. J Neurophysiol. 1999;82(6):3254–67.

    Article  CAS  PubMed  Google Scholar 

  34. Ohgaki T, Markham CH, Schneider JS, Curthoys IS. Anatomical evidence of the projection of pontine omnipause neurons to midbrain regions controlling vertical eye movements. J Comp Neurol. 1989;289(4):610–25.

    Article  CAS  PubMed  Google Scholar 

  35. Keller EL, Edelman JA. Use of interrupted saccade paradigm to study spatial and temporal dynamics of saccadic burst cells in superior colliculus in monkey. J Neurophysiol. 1994;72(6):2754–70.

    Article  CAS  PubMed  Google Scholar 

  36. Keller EL, Gandhi NJ, Shieh JM. Endpoint accuracy in saccades interrupted by stimulation in the omnipause region in monkey. Vis Neurosci. 1996;13(6):1059–67.

    Article  CAS  PubMed  Google Scholar 

  37. Munoz DP, Waitzman DM, Wurtz RH. Activity of neurons in monkey superior colliculus during interrupted saccades. J Neurophysiol. 1996;75(6):2562–80.

    Article  CAS  PubMed  Google Scholar 

  38. Schiller PH, True SD, Conway JL. Deficits in eye movements following frontal eye-field and superior colliculus ablations. J Neurophysiol. 1980;44(6):1175–89.

    Article  CAS  PubMed  Google Scholar 

  39. Schiller PH, Chou IH. The effects of frontal eye field and dorsomedial frontal cortex lesions on visually guided eye movements. Nat Neurosci. 1998;1(3):248–53.

    Article  CAS  PubMed  Google Scholar 

  40. Dias EC, Segraves MA. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. J Neurophysiol. 1999;81(5):2191–214.

    Article  CAS  PubMed  Google Scholar 

  41. Hanes DP, Smith MK, Optican LM, Wurtz RH. Recovery of saccadic dysmetria following localized lesions in monkey superior colliculus. Exp Brain Res. 2005;160(3):312–25.

    Article  PubMed  Google Scholar 

  42. Ohtsuka K, Noda H. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. J Neurophysiol. 1995;74(5):1828–40.

    Article  CAS  PubMed  Google Scholar 

  43. Optican LM, Robinson DA. Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol. 1980;44(6):1058–76.

    Article  CAS  PubMed  Google Scholar 

  44. Zee DS, Yamazaki A, Butler PH, Gücer G. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol. 1981;46(4):878–99.

    Article  CAS  PubMed  Google Scholar 

  45. Ohtsuka K, Noda H. Saccadic burst neurons in the oculomotor region of the fastigial nucleus of macaque monkeys. J Neurophysiol. 1991;65(6):1422–34.

    Article  CAS  PubMed  Google Scholar 

  46. Fuchs AF, Robinson FR, Straube A. Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. J Neurophysiol. 1993;70(5):1723–40.

    Article  CAS  PubMed  Google Scholar 

  47. Helmchen C, Straube A, Büttner U. Saccade-related activity in the fastigial oculomotor region of the macaque monkey during spontaneous eye movements in light and darkness. Exp Brain Res. 1994;98(3):474–82.

    Article  CAS  PubMed  Google Scholar 

  48. Selhorst JB, Stark L, Ochs AL, Hoyt WF. Disorders in cerebellar ocular motor control. I. Saccadic overshoot dysmetria. An oculographic, control system and clinico-anatomical analysis. Brain J Neurol. 1976;99(3):497–508.

    Article  CAS  Google Scholar 

  49. Selhorst JB, Stark L, Ochs AL, Hoyt WF. Disorders in cerebellar ocular motor control. II. Macrosaccadic oscillation. An oculographic, control system and clinico-anatomical analysis. Brain J Neurol. 1976;99(3):509–22.

    Article  CAS  Google Scholar 

  50. Robinson FR, Straube A, Fuchs AF. Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J Neurophysiol. 1993;70(5):1741–58.

    Article  CAS  PubMed  Google Scholar 

  51. Livingstone M, Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science. 1988;240(4853):740–9.

    Article  CAS  PubMed  Google Scholar 

  52. Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein J, Voogd J. Visual pontocerebellar projections in the macaque. J Comp Neurol. 1994;349(1):51–72.

    Article  CAS  PubMed  Google Scholar 

  53. Van Essen DC, Gallant JL. Neural mechanisms of form and motion processing in the primate visual system. Neuron. 1994;13(1):1–10.

    Article  PubMed  Google Scholar 

  54. Ilg UJ. Commentary: smooth pursuit eye movements: from low-level to high-level vision. Prog Brain Res. 2002;140:279–98.

    Article  PubMed  Google Scholar 

  55. Werner JS, Chalupa LM, editors. The new visual neurosciences. 1st ed. Cambridge: The MIT Press; 2013. 1696 p

    Google Scholar 

  56. Derrington AM, Allen HA, Delicato LS. Visual mechanisms of motion analysis and motion perception. Annu Rev Psychol. 2004;55(1):181–205.

    Article  PubMed  Google Scholar 

  57. Vaina LM, Soloviev S. First-order and second-order motion: neurological evidence for neuroanatomically distinct systems. Prog Brain Res. 2004;144:197–212.

    Article  PubMed  Google Scholar 

  58. Chen KJ, Sheliga BM, Fitzgibbon EJ, Miles FA. Initial ocular following in humans depends critically on the fourier components of the motion stimulus. Ann N Y Acad Sci. 2005;1039:260–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nagao S, Kitamura T, Nakamura N, Hiramatsu T, Yamada J. Differences of the primate flocculus and ventral paraflocculus in the mossy and climbing fiber input organization. J Comp Neurol. 1997;382(4):480–98.

    Article  CAS  PubMed  Google Scholar 

  60. Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG. Partial ablations of the Flocculus and ventral Paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol. 2002;87(2):912–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Heinen SJ, Keller EL. The function of the cerebellar uvula in monkey during optokinetic and pursuit eye movements: single-unit responses and lesion effects. Exp Brain Res. 1996;110(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  62. Kase M, Noda H, Suzuki DA, Miller DC. Target velocity signals of visual tracking in vermal Purkinje cells of the monkey. Science. 1979;205(4407):717–20.

    Article  CAS  PubMed  Google Scholar 

  63. Suzuki DA, Noda H, Kase M. Visual and pursuit eye movement-related activity in posterior vermis of monkey cerebellum. J Neurophysiol. 1981;46(5):1120–39.

    Article  CAS  PubMed  Google Scholar 

  64. Suzuki DA, Keller EL. The role of the posterior vermis of monkey cerebellum in smooth-pursuit eye movement control. II. Target velocity-related Purkinje cell activity. J Neurophysiol. 1988;59(1):19–40.

    Article  CAS  PubMed  Google Scholar 

  65. Ohtsuka K, Enoki T. Transcranial magnetic stimulation over the posterior cerebellum during smooth pursuit eye movements in man. Brain J Neurol. 1998;121(Pt 3):429–35.

    Article  Google Scholar 

  66. Shinmei Y, Yamanobe T, Fukushima J, Fukushima K. Purkinje cells of the cerebellar dorsal vermis: simple-spike activity during pursuit and passive whole-body rotation. J Neurophysiol. 2002;87(4):1836–49.

    Article  PubMed  Google Scholar 

  67. Fuchs AF, Robinson FR, Straube A. Participation of the caudal fastigial nucleus in smooth-pursuit eye movements. I. Neuronal activity. J Neurophysiol. 1994;72(6):2714–28.

    Article  CAS  PubMed  Google Scholar 

  68. Vahedi K, Rivaud S, Amarenco P, Pierrot-Deseilligny C. Horizontal eye movement disorders after posterior vermis infarctions. J Neurol Neurosurg Psychiatry. 1995;58(1):91–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Laurens J, Angelaki DE. The functional significance of velocity storage and its dependence on gravity. Exp Brain Res. 2011;210(3–4):407–22.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zee DS, Leigh RJ, Mathieu-Millaire F. Cerebellar control of ocular gaze stability. Ann Neurol. 1980;7(1):37–40.

    Article  CAS  PubMed  Google Scholar 

  71. Leigh RJ, Robinson DA, Zee DS. A hypothetical explanation for periodic alternating nystagmus: instability in the optokinetic-vestibular system. Ann N Y Acad Sci. 1981;374:619–35.

    Article  CAS  PubMed  Google Scholar 

  72. Stell R, Bronstein AM, Plant GT, Harding AE. Ataxia telangiectasia: a reappraisal of the ocular motor features and their value in the diagnosis of atypical cases. Mov Disord Off J Mov Disord Soc. 1989;4(4):320–9.

    Article  CAS  Google Scholar 

  73. Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford TO, Straumann D, et al. Ataxia telangiectasia: a “disease model” to understand the cerebellar control of vestibular reflexes. J Neurophysiol. 2011;105(6):3034–41.

    Article  PubMed  Google Scholar 

  74. Waespe W, Cohen B, Raphan T. Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science. 1985;228(4696):199–202.

    Article  CAS  PubMed  Google Scholar 

  75. Ito M. Neurophysiological aspects of the cerebellar motor control system. Int J Neurol. 1970;7(2):162–76.

    CAS  PubMed  Google Scholar 

  76. Schultheis LW, Robinson DA. Directional plasticity of the vestibuloocular reflex in the cat. Ann N Y Acad Sci. 1981;374:504–12.

    Article  CAS  PubMed  Google Scholar 

  77. Walker MF, Zee DS. Cerebellar disease alters the axis of the high-acceleration vestibuloocular reflex. J Neurophysiol. 2005;94(5):3417–29.

    Article  PubMed  Google Scholar 

  78. Walker MF, Zee DS. Directional abnormalities of vestibular and optokinetic responses in cerebellar disease. Ann N Y Acad Sci. 1999;871:205–20.

    Article  CAS  PubMed  Google Scholar 

  79. Lisberger SG. The latency of pathways containing the site of motor learning in the monkey vestibulo-ocular reflex. Science. 1984;225(4657):74–6.

    Article  CAS  PubMed  Google Scholar 

  80. Fernandez C, Goldberg JM, Abend WK. Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol. 1972;35(6):978–87.

    Article  CAS  PubMed  Google Scholar 

  81. Angelaki DE, Shaikh AG, Green AM, Dickman JD. Neurons compute internal models of the physical laws of motion. Nature. 2004;430(6999):560–4.

    Article  CAS  PubMed  Google Scholar 

  82. Shaikh AG, Ghasia FF, Dickman JD, Angelaki DE. Properties of cerebellar fastigial neurons during translation, rotation, and eye movements. J Neurophysiol. 2005;93(2):853–63.

    Article  PubMed  Google Scholar 

  83. Shaikh AG, Green AM, Ghasia FF, Newlands SD, Dickman JD, Angelaki DE. Sensory convergence solves a motion ambiguity problem. Curr Biol CB. 2005;15(18):1657–62.

    Article  CAS  PubMed  Google Scholar 

  84. Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, Angelaki DE. Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron. 2007;54(6):973–85.

    Article  CAS  PubMed  Google Scholar 

  85. Angelaki DE, Hess BJ. Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus. J Neurophysiol. 1995;73(5):1729–51.

    Article  CAS  PubMed  Google Scholar 

  86. Sheliga BM, Yakushin SB, Silvers A, Raphan T, Cohen B. Control of spatial orientation of the angular vestibulo-ocular reflex by the nodulus and uvula of the vestibulocerebellum. Ann N Y Acad Sci. 1999;871(1):94–122.

    Article  CAS  PubMed  Google Scholar 

  87. Robinson DA. Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol. 1976;39(5):954–69.

    Article  CAS  PubMed  Google Scholar 

  88. Wearne S, Raphan T, Cohen B. Effects of tilt of the gravito-inertial acceleration vector on the angular vestibuloocular reflex during centrifugation. J Neurophysiol. 1999;81(5):2175–90.

    Article  CAS  PubMed  Google Scholar 

  89. Robinson DA. The use of matrices in analyzing the three-dimensional behavior of the vestibulo-ocular reflex. Biol Cybern. 1982;46(1):53–66.

    Article  CAS  PubMed  Google Scholar 

  90. Raphan T, Matsuo V, Cohen B. Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res. 1979;35(2):229–48.

    Article  CAS  PubMed  Google Scholar 

  91. Ramat S, Leigh RJ, Zee DS, Optican LM. What clinical disorders tell us about the neural control of saccadic eye movements. Brain J Neurol. 2007;130(Pt 1):10–35.

    Google Scholar 

Download references

Funding

This work was supported by the Dystonia Coalition Career Development Award (AS), Dystonia Medical Research Foundation Research Grant (AS), and the American Academy of Neurology Career Development Award (AS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aasef G. Shaikh.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S.Y., Shaikh, A.G. Past and Present of Eye Movement Abnormalities in Ataxia-Telangiectasia. Cerebellum 18, 556–564 (2019). https://doi.org/10.1007/s12311-018-0990-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-018-0990-x

Keywords

Navigation