Skip to main content
Log in

Heterostructure Cu3P−Ni2P/CP catalyst assembled membrane electrode for high-efficiency electrocatalytic nitrate to ammonia

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemical nitrate reduction reaction (NO3RR) is a promising means for generating the energy carrier ammonia. Herein, we report the synthesis of heterostructure copper-nickel phosphide electrocatalysts via a simple vapor-phase hydrothermal method. The resultant catalysts were evaluated for electrocatalytic nitrate reduction to ammonia (NH3) in three-type electrochemical reactors. In detail, the regulation mechanism of the heterogeneous Cu3P−Ni2P/CP−x for NO3RR performance was systematically studied through the H-type cell, rotating disk electrode setup, and membrane-electrode-assemblies (MEA) electrolyzer. As a result, the Cu3P−Ni2P/CP−0.5 displays the practicability in an MEA system with an anion exchange membrane, affording the largest ammonia yield rate (RNH3) of 1.9 mmol·h−1·cm−2, exceeding most of the electrocatalytic nitrate reduction electrocatalysts reported to date. The theoretical calculations and in-situ spectroscopy characterizations uncover that the formed heterointerface in Cu3P−Ni2P/CP is beneficial for promoting nitrate adsorption, activation, and conversion to ammonia through the successive hydrodeoxygenation pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y. T.; Qiu, W. X.; Wang, P. F.; Li, R.; Liu, K.; Omer, K. M.; Jin, Z. Y.; Li, P. P. Pyridine-N-rich Cu single-atom catalyst boosts nitrate electroreduction to ammonia. Appl. Catal. B: Environ. 2024, 340, 123228.

    Article  CAS  Google Scholar 

  2. Gong, Z. H.; Xiang, X. P.; Zhong, W. Y.; Jia, C. H.; Chen, P. Y.; Zhang, N.; Zhao, S. J.; Liu, W. Z.; Chen, Y.; Lin, Z. Modulating metal-nitrogen coupling in anti-perovskite nitride via cation doping for efficient reduction of nitrate to ammonia. Angew. Chem., Int. Ed. 2023, 135, e202308775.

    Article  ADS  Google Scholar 

  3. Zhang, X. R.; Lyu, Y.; Zhou, H. J.; Zheng, J. Y.; Huang, A. B.; Ding, J. J.; Xie, C.; De Marco, R.; Tsud, N.; Kalinovych, V. et al. Photoelectrochemical N2-to-NH3 fixation with high efficiency and rates via optimized Si-based system at positive potential versus Li0/+. Adv. Mater. 2023, 35, 2211894.

    Article  CAS  Google Scholar 

  4. Murphy, E.; Liu, Y. C.; Matanovic, I.; Rüscher, M.; Huang, Y.; Ly, A.; Guo, S. Y.; Zang, W. J.; Yan, X. X.; Martini, A. et al. Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites. Nat. Commun. 2023, 14, 4554.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiang, H. F.; Chen, G. F.; Savateev, O.; Xue, J.; Ding, L. X.; Liang, Z. X.; Antonietti, M.; Wang, H. H. Enabled efficient ammonia synthesis and energy supply in a zinc-nitrate battery system by separating nitrate reduction process into two stages. Angew. Chem., Int. Ed. 2023, 62, e202218717.

    Article  CAS  Google Scholar 

  6. Yuan, J.; Feng, W. H.; Zhang, Y. F.; Xiao, J. Y.; Zhang, X. Y.; Wu, Y. T.; Ni, W. K.; Huang, H. W.; Dai, W. X. Unraveling synergistic effect of defects and piezoelectric field in breakthrough piezophotocatalytic N2 reduction. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202303845.

  7. Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.

    Article  CAS  Google Scholar 

  8. Zhao, R. D.; Yan, Q. Y.; Yu, L. H.; Yan, T.; Zhu, X. Y.; Zhao, Z. Y.; Liu, L.; Xi, J. Y. A Bi-Co corridor construction effectively improving the selectivity of electrocatalytic nitrate reduction toward ammonia by nearly 100%. Adv. Mater. 2023, 35, 2306633.

    Article  CAS  Google Scholar 

  9. Hu, Q.; Qin, Y. J.; Wang, X. D.; Wang, Z. Y.; Huang, X. W.; Zheng, H. J.; Gao, K. R.; Yang, H. P.; Zhang, P. X.; Shao, M. H. et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate-ammonia conversion. Energy Environ. Sci. 2021, 14, 4989–4997.

    Article  CAS  Google Scholar 

  10. Chen, W. D.; Yang, X. Y.; Chen, Z. D.; Ou, Z. J.; Hu, J. T.; Xu, Y.; Li, Y. L.; Ren, X. Z.; Ye, S. H.; Qiu, J. S. et al. Emerging applications, developments, prospects, and challenges of electrochemical nitrate-to-ammonia conversion. Adv. Funct. Mater. 2023, 33, 2300512.

    Article  CAS  Google Scholar 

  11. Gu, Z. X.; Zhang, Y. C.; Wei, X. L.; Duan, Z. Y.; Gong, Q. Y.; Luo, K. Intermediates regulation via electron-deficient Cu sites for selective nitrate-to-ammonia electroreduction. Adv. Mater. 2023, 35, 2303107.

    Article  CAS  Google Scholar 

  12. Yao, F. B.; Jia, M. C.; Yang, Q.; Chen, F.; Zhong, Y.; Chen, S. J.; He, L.; Pi, Z. J.; Hou, K. J.; Wang, D. B. et al. Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: Performance, mechanism, and application. Water Res. 2021, 193, 116881.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.

    Article  CAS  PubMed  Google Scholar 

  14. Xue, Z. H.; Shen, H. C.; Chen, P. C.; Pan, G. X.; Zhang, W. W.; Zhang, W. M.; Zhang, S. N.; Li, X. H.; Yavuz, C. T. Boronization of nickel foam for sustainable electrochemical reduction of nitrate to ammonia. ACS Energy Lett. 2023, 8, 3843–3851.

    Article  CAS  Google Scholar 

  15. Ren, Z. H.; Shi, K. G.; Feng, X. F. Elucidating the intrinsic activity and selectivity of Cu for nitrate electroreduction. ACS Energy Lett. 2023, 8, 3658–3665.

    Article  CAS  Google Scholar 

  16. Lv, C. D.; Liu, J. W.; Lee, C.; Zhu, Q.; Xu, J. W.; Pan, H. G.; Xue, C.; Yan, Q. Y. Emerging p-block-element-based electrocatalysts for sustainable nitrogen conversion. ACS Nano 2022, 16, 15512–15527.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, J.; Feng, T.; Chen, J. X.; Ramalingam, V.; Li, Z. X.; Kabtamu, D. M.; He, J. H.; Fang, X. S. Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy 2021, 86, 106088.

    Article  CAS  Google Scholar 

  18. Wang, J.; Feng, T.; Chen, J. X.; He, J. H.; Fang, X. S. Flexible 2D Cu metal: Organic framework@mxene film electrode with excellent durability for highly selective electrocatalytic NH3 synthesis. Research 2022, 2022, 9837012.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun, W. J.; Ji, H. Q.; Li, L. X.; Zhang, H. Y.; Wang, Z. K.; He, J. H.; Lu, J. M. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew. Chem., Int. Ed. 2021, 60, 22933–22939.

    Article  CAS  Google Scholar 

  20. Bu, Y. G.; Wang, C.; Zhang, W. K.; Yang, X. H.; Ding, J.; Gao, G. D. Electrical pulse-driven periodic self-repair of Cu−Ni tandem catalyst for efficient ammonia synthesis from nitrate. Angew. Chem., Int. Ed. 2023, 62, e202217337.

    Article  CAS  Google Scholar 

  21. Xu, L. H.; Liu, W. P.; Liu, K. Single atom environmental catalysis: Influence of supports and coordination environments. Adv. Funct. Mater. 2023, 33, 2304468.

    Article  CAS  Google Scholar 

  22. Wang, S. W.; Song, C. F.; Cai, Y. J.; Li, Y. F.; Jiang, P. K.; Li, H.; Yu, B.; Ma, T. Y. Interfacial polarization triggered by covalent-bonded MXene and black phosphorus for enhanced electrochemical nitrate to ammonia conversion. Adv. Energy Mater. 2023, 13, 2301136.

    Article  CAS  Google Scholar 

  23. Zhang, G. K.; Wang, F. Z.; Chen, K.; Kang, J. L.; Chu, K. Atomically dispersed Sn confined in FeS2 for nitrate-to-ammonia electroreduction. Adv. Funct. Mater. 2024, 34, 2305372.

    Article  CAS  Google Scholar 

  24. Zhou, Y. Y.; Duan, R. Z.; Li, H.; Zhao, M.; Ding, C. M.; Li, C. Boosting electrocatalytic nitrate reduction to ammonia via promoting water dissociation. ACS Catal. 2023, 13, 10846–10854.

    Article  CAS  Google Scholar 

  25. Zhao, G. Q.; Jiang, Y. Z.; Dou, S. X.; Sun, W. P.; Pan, H. G. Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Sci. Bull. 2021, 66, 85–96.

    Article  CAS  Google Scholar 

  26. Tan, Z. X.; Du, F.; Tong, M. Q.; Hu, J. D.; Zhang, N.; Huang, S. Y.; Guo, C. X. Heterostructured CoS2/MoS2 with a rich active site for an efficient electrochemical nitrate reduction reaction to ammonia. Energy Fuels 2023, 37, 18085–18092.

    Article  CAS  Google Scholar 

  27. Zhao, X. E.; Li, Z. R.; Gao, S.; Sun, X. P.; Zhu, S. Y. CoS2@TiO2 nanoarray: A heterostructured electrocatalyst for high-efficiency nitrate reduction to ammonia. Chem. Commun. 2022, 58, 12995–12998.

    Article  CAS  Google Scholar 

  28. Liu, Y.; Yao, X. M.; Liu, X.; Liu, Z. L.; Wang, Y. Q. Cu2+1O/Ag heterostructure for boosting the electrocatalytic nitrate reduction to ammonia performance. Inorg. Chem. 2023, 62, 7525–7532.

    Article  CAS  PubMed  Google Scholar 

  29. Paul, S.; Sarkar, S.; Adalder, A.; Kapse, S.; Thapa, R.; Ghorai, U. K. Strengthening the metal center of Co−N4 active sites in a 1D–2D heterostructure for nitrate and nitrogen reduction reaction to ammonia. ACS Sustainable Chem. Eng. 2023, 11, 6191–6200.

    Article  CAS  Google Scholar 

  30. Zheng, L. X.; Ye, W. Q.; Zhao, Y. J.; Lv, Z. Q.; Shi, X. W.; Wu, Q.; Fang, X. S.; Zheng, H. J. Defect-induced atomic arrangement in CoFe bimetallic heterostructures with boosted oxygen evolution activity. Small 2023, 19, 2205092.

    Article  CAS  Google Scholar 

  31. Zhou, P.; Tao, L.; Tao, S. S.; Li, Y. C.; Wang, D. D.; Dong, X. W.; Frauenheim, T.; Fu, X. Z.; Lv, X. S.; Wang, S. Y. Construction of nickel-based dual heterointerfaces towards accelerated alkaline hydrogen evolution via boosting multi-step elementary reaction. Adv. Funct. Mater. 2021, 31, 2104827.

    Article  CAS  Google Scholar 

  32. Liu, D.; Xu, G. Y.; Yang, H.; Wang, H. T.; Xia, B. Y. Rational design of transition metal phosphide-based electrocatalysts for hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2208358.

    Article  CAS  Google Scholar 

  33. Huang, C. J.; Xu, H. M.; Shuai, T. Y.; Zhan, Q. N.; Zhang, Z. J.; Li, G. R. A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction. Appl. Catal. B Environ. 2023, 325, 122313.

    Article  CAS  Google Scholar 

  34. Zeng, L. Y.; Sun, K. A.; Wang, X. B.; Liu, Y. Q.; Pan, Y.; Liu, Z.; Cao, D. W.; Song, Y.; Liu, S. H.; Liu, C. G. Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity. Nano Energy 2018, 51, 26–36.

    Article  CAS  Google Scholar 

  35. Liu, Y. Q.; Zhang, Z. H.; Zhang, L.; Xia, Y. G.; Wang, H. Q.; Liu, H.; Ge, S. G.; Yu, J. H. Manipulating the d-band centers of transition metal phosphides through dual metal doping towards robust overall water splitting. J. Mater. Chem. A 2022, 10, 22125–22134.

    Article  CAS  Google Scholar 

  36. Ren, T. L.; Yu, Z.; Yu, H. J.; Deng, K.; Wang, Z. Q.; Li, X. N.; Wang, H. J.; Wang, L.; Xu, Y. Interfacial polarization in metal–organic framework reconstructed Cu/Pd/CuOx multi-phase heterostructures for electrocatalytic nitrate reduction to ammonia. Appl. Catal. B Environ. 2022, 318, 121805.

    Article  CAS  Google Scholar 

  37. Ji, X. Y.; Sun, K.; Liu, Z. K.; Liu, X. H.; Dong, W. K.; Zuo, X. T.; Shao, R. W.; Tao, J. Identification of dynamic active sites among Cu species derived from MOFs@CuPc for electrocatalytic nitrate reduction reaction to ammonia. NanoMicro Lett. 2023, 15, 110.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu, Z. A.; Wan, L.; Liao, Y. W.; Pang, M. B.; Xu, Q.; Wang, P. C.; Wang, B. G. Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA·cm−2. Nat. Commun. 2023, 14, 1619.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, X.; Han, M. M.; Liu, G. Q.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Simultaneously high-rate furfural hydrogenation and oxidation upgrading on nanostructured transition metal phosphides through electrocatalytic conversion at ambient conditions. Appl. Catal. B Environ. 2019, 244, 899–908.

    Article  CAS  Google Scholar 

  40. Jin, M.; Zhang, X.; Han, M. M.; Wang, H. J.; Wang, G. Z.; Zhang, H. M. Efficient electrochemical N2 fixation by doped-oxygen-induced phosphorus vacancy defects on copper phosphide nanosheets. J. Mater. Chem. A 2020, 8, 5936–5942.

    Article  CAS  Google Scholar 

  41. Wouters, B.; Sheng, X.; Boschin, A.; Breugelmans, T.; Ahlberg, E.; Vankelecom, I. F. J.; Pescarmona, P. P.; Hubin, A. The electrocatalytic behaviour of Pt and Cu nanoparticles supported on carbon nanotubes for the nitrobenzene reduction in ethanol. Electrochim. Acta 2013, 111, 405–410.

    Article  CAS  Google Scholar 

  42. Daems, N.; Wouters, J.; Van Goethem, C.; Baert, K.; Poleunis, C.; Delcorte, A.; Hubin, A.; Vankelecom, I. F. J.; Pescarmona, P. P. Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metals. Appl. Catal. B Environ. 2018, 226, 509–522.

    Article  CAS  Google Scholar 

  43. Wang, C. H.; Liu, Z. Y.; Hu, T.; Li, J. S.; Dong, L. Q.; Du, F.; Li, C. M.; Guo, C. X. Metasequoia-like nanocrystal of iron-doped copper for efficient electrocatalytic nitrate reduction into ammonia in neutral media. ChemSusChem 2021, 14, 1825–1829.

    Article  CAS  PubMed  Google Scholar 

  44. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

    Article  ADS  CAS  Google Scholar 

  45. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  CAS  PubMed  Google Scholar 

  47. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  ADS  PubMed  Google Scholar 

  48. Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

    Article  CAS  Google Scholar 

  49. Huang, Y. M.; Yang, R.; Wang, C. H.; Meng, N. N.; Shi, Y. M.; Yu, Y. F.; Zhang, B. Direct electrosynthesis of urea from carbon dioxide and nitric oxide. ACS Energy Lett. 2022, 7, 284–291.

    Article  CAS  Google Scholar 

  50. Wu, L. B.; Yu, L.; Zhang, F. H.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. F. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 2021, 31, 2006484.

    Article  CAS  Google Scholar 

  51. Liu, C. C.; Gong, T.; Zhang, J.; Zheng, X. R.; Mao, J.; Liu, H.; Li, Y.; Hao, Q. Y. Engineering Ni2P−NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution. Appl. Catal. B Environ. 2020, 262, 118245.

    Article  CAS  Google Scholar 

  52. Chen, J. Y.; Li, X.; Ma, B.; Zhao, X. D.; Chen, Y. T. Cu3P@Ni core-shell heterostructure with modulated electronic structure for highly efficient hydrogen evolution. Nano Res. 2022, 15, 2935–2942.

    Article  ADS  CAS  Google Scholar 

  53. Gang, C.; Chen, J.; Li, X.; Ma, B.; Zhao, X.; Chen, Y. Cu3P@CoO core–shell heterostructure with synergistic effect for highly efficient hydrogen evolution. Nanoscale 2021, 13, 19430–19437.

    Article  CAS  PubMed  Google Scholar 

  54. Qin, X. Y.; Yan, B. Y.; Kim, D.; Teng, Z. S.; Chen, T. Y.; Choi, J.; Xu, L.; Piao, Y. Interfacial engineering and hydrophilic/aerophobic tuning of Sn4P3/Co2P heterojunction nanoarrays for high-efficiency fully reversible water electrolysis. Appl. Catal. B Environ. 2022, 304, 120923.

    Article  CAS  Google Scholar 

  55. Yang, B. P.; Zhou, Y. L.; Huang, Z. C.; Mei, B. B.; Kang, Q.; Chen, G.; Liu, X. H.; Jiang, Z.; Liu, M.; Zhang, N. Electron-deficient cobalt nanocrystals for promoted nitrate electrocatalytic reduction to synthesize ammonia. Nano Energy 2023, 117, 108901.

    Article  CAS  Google Scholar 

  56. Guharoy, U.; Reina, T. R.; Olsson, E.; Gu, S.; Cai, Q. Theoretical insights of Ni2P (0001) surface toward its potential applicability in CO2 conversion via dry reforming of methane. ACS Catal. 2019, 9, 3487–3497.

    Article  CAS  Google Scholar 

  57. Jin, M.; Liu, Y. Y.; Zhang, X.; Wang, J. L.; Zhang, S. B.; Wang, G. Z.; Zhang, Y. X.; Yin, H. J.; Zhang, H. M.; Zhao, H. J. Selective electrocatalytic hydrogenation of nitrobenzene over copper-platinum alloying catalysts: Experimental and theoretical studies. Appl. Catal. B Environ. 2021, 298, 120545.

    Article  CAS  Google Scholar 

  58. Yang, Y.; Li, F. W. Reactor design for electrochemical CO2 conversion toward large-scale applications. Curr. Opin. Green Sustain. Chem. 2021, 27, 100419.

    Article  CAS  Google Scholar 

  59. Gao, D. F.; Wei, P. F.; Li, H. F.; Lin, L.; Wang, G. X.; Bao, X. H. Designing electrolyzers for electrocatalytic CO2 reduction. Acta Phys. Chim. Sin. 2021, 37, 2009021.

    Google Scholar 

  60. Lagadec, M. F.; Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 2020, 19, 1140–1150.

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Weng, L. C.; Bell, A. T.; Weber, A. Z. Towards membrane-electrode assembly systems for CO2 reduction: A modeling study. Energy Environ. Sci. 2019, 12, 1950–1968.

    Article  CAS  Google Scholar 

  62. Higgins, D.; Hahn, C.; Xiang, C. X.; Jaramillo, T. F.; Weber, A. Z. Gas-diffusion electrodes for carbon dioxide reduction: A new paradigm. ACS Energy Lett. 2019, 4, 317–324.

    Article  CAS  Google Scholar 

  63. Gabardo, C. M.; O’Brien, C. P.; Edwards, J. P.; McCallum, C.; Xu, Y.; Dinh, C. T.; Li, J.; Sargent, E. H.; Sinton, D. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 2019, 3, 2777–2791.

    Article  CAS  Google Scholar 

  64. Kutz, R. B.; Chen, Q. M.; Yang, H. Z.; Sajjad, S. D.; Liu, Z. C.; Masel, I. R. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol. 2017, 5, 929–936.

    Article  CAS  Google Scholar 

  65. Shao, Q.; Wang, P. T.; Huang, X. Q. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv. Funct. Mater. 2019, 29, 1806419.

    Article  Google Scholar 

  66. Jia, R. R.; Wang, Y. T.; Wang, C. H.; Ling, Y. F.; Yu, Y. F.; Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540.

    Article  CAS  Google Scholar 

  67. Chen, Z. W.; Chen, L. X.; Wen, Z.; Jiang, Q. Understanding electrocatalysis by using density functional theory. Phys. Chem. Chem. Phys. 2019, 21, 23782–23802.

    Article  CAS  PubMed  Google Scholar 

  68. Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; Jin, X.; Zhu, Y.; Liu, Y.; Li, Z.; El-Harairy, A.; Xiao, C. et al. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem., Int. Ed. 2021, 60, 5984–5993.

    Article  CAS  Google Scholar 

  69. Wang, Y. L.; Yin, H. B.; Dong, F.; Zhao, X. G.; Qu, Y. K.; Wang, L. X.; Peng, Y.; Wang, D. S.; Fang, W.; Li, J. H. N-coordinated Cu−Ni dual-single-atom catalyst for highly selective electrocatalytic reduction of nitrate to ammonia. Small 2023, 19, 2207695.

    Article  CAS  Google Scholar 

  70. Zhou, N.; Wang, Z.; Zhang, N.; Bao, D.; Zhong, H. X.; Zhang, X. B. Potential-induced synthesis and structural identification of oxide-derived Cu electrocatalysts for selective nitrate reduction to ammonia. ACS Catal. 2023, 13, 7529–7537.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the postdoctoral researcher funding project of Anhui Province (No. 2022B585), the HFIPS Director’s Fund (No. YZJJ2023QN29), the National Natural Science Foundation of China (No. 52172106), and the Special Research Assistant Program, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian Zhang or Haimin Zhang.

Electronic Supplementary Material

12274_2024_6474_MOESM1_ESM.pdf

Heterostructure Cu3P−Ni2P/CP catalyst assembled membrane electrode for high-efficiency electrocatalytic nitrate to ammonia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, M., Liu, J., Zhang, X. et al. Heterostructure Cu3P−Ni2P/CP catalyst assembled membrane electrode for high-efficiency electrocatalytic nitrate to ammonia. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6474-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6474-z

Keywords

Navigation