Skip to main content
Log in

Cu3P@Ni core-shell heterostructure with modulated electronic structure for highly efficient hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The sluggish charge transfer and poor intrinsic activity are the bottlenecks that hamper the further development of electrocatalysts for hydrogen evolution. A novel core-shell heterostructure of Cu3P@Ni is fabricated, which is composed of Cu3P nanorods covered by metallic Ni. The as-prepared Cu3P@Ni exhibits a durable and superior activity toward hydrogen evolution, with an overpotential of 42 mV to deliver 10 mA·cm−2 and a Tafel slope of 41 mV·dec−1. Charge redistribution is observed after successfully constructing the core-shell heterostructure, leading to the altered electronic structure. The theoretical calculations have manifested that Cu3P@Ni exhibits a zero bandgap and optimized adsorption strength of intermediates, which could give rise to the accelerated charge transfer as well as increased intrinsic activity. This work could shed light on the development of novel electrocatalysts with modulated electronic structure for highly efficient hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Züttel, A.; Remhof, A.; Borgschulte, A.; Friedrichs, O. Hydrogen: The future energy carrier. Philos. Trans. Roy. Soc. A:Math., Phys. Eng. Sci. 2010, 368, 3329–3342.

    Article  Google Scholar 

  2. Ali, A.; Shen, P. K. Nonprecious metal’s graphene-supported electrocatalysts for hydrogen evolution reaction: Fundamentals to applications. Carbon Energy 2020, 2, 99–121.

    Article  CAS  Google Scholar 

  3. Wang, H. X.; Cui, Y. Nanodiamonds for energy. Carbon Energy 2019, 1, 13–18.

    Article  Google Scholar 

  4. Yuan, Y. F.; Lu, J. Demanding energy from carbon. Carbon Energy 2019, 1, 8–12.

    Article  Google Scholar 

  5. Zhao, H.; Zhang, H. Z.; Cui, G. W.; Dong, Y. M.; Wang, G. L.; Jiang, P. P.; Wu, X. M.; Zhao, N. A photochemical synthesis route to typical transition metal sulfides as highly efficient cocatalyst for hydrogen evolution: From the case of NiS/g-C3N4. Appl. Catal. B:Environ. 2018, 225, 284–290.

    Article  CAS  Google Scholar 

  6. Sun, Y. G.; Alimohammadi, F.; Zhang, D. T.; Guo, G. S. Enabling colloidal synthesis of edge-oriented MoS2 with expanded interlayer spacing for enhanced HER catalysis. Nano Lett. 2017, 17, 1963–1969.

    Article  CAS  Google Scholar 

  7. Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

    Article  CAS  Google Scholar 

  8. Chen, Y. T.; Ren, R.; Wen, Z. H.; Ci, S. Q.; Chang, J. B.; Mao, S.; Chen, J. H. Superior electrocatalysis for hydrogen evolution with crumpled graphene/tungsten disulfide/tungsten trioxide ternary nanohybrids. Nano Energy 2018, 47, 66–73.

    Article  Google Scholar 

  9. Ma, B.; Yang, Z. C.; Yuan, Z. H.; Chen, Y. T. Effective surface roughening of three-dimensional copper foam via sulfurization treatment as a bifunctional electrocatalyst for water splitting. Int. J. Hydrogen Energy 2019, 44, 1620–1626.

    Article  CAS  Google Scholar 

  10. Wang, H. T.; Kong, D. S.; Johanes, P.; Cha, J. J.; Zheng, G. Y.; Yan, K.; Liu, N.; Cui, Y. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 2013, 13, 3426–3433.

    Article  CAS  Google Scholar 

  11. Zhou, X. L.; Liu, Y.; Ju, H. X.; Pan, B. C.; Zhu, J. F.; Ding, T.; Wang, C. D.; Yang, Q. Design and epitaxial growth of MoSe2-NiSe vertical heteronanostructures with electronic modulation for enhanced hydrogen evolution reaction. Chem. Mater. 2016, 28, 1838–1846.

    Article  CAS  Google Scholar 

  12. Mao, S.; Wen, Z. H.; Ci, S. Q.; Guo, X. R.; Ostrikov, K.; Chen, J. H. Perpendicularly oriented MoSe2/graphene nanosheets as advanced electrocatalysts for hydrogen evolution. Small 2015, 11, 414–419.

    Article  CAS  Google Scholar 

  13. Shen, S. J.; Lin, Z. P.; Song, K.; Wang, Z. P.; Huang, L. G.; Yan, L. H.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Reversed active sites boost the intrinsic activity of graphene-like cobalt selenide for hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 12360–12365.

    Article  CAS  Google Scholar 

  14. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F. Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

    Article  CAS  Google Scholar 

  15. Gu, Y.; Chen, S.; Ren, J.; Jia, Y. A.; Chen, C. M.; Komarneni, S.; Yang, D. J.; Yao, X. D. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 245–253.

    Article  CAS  Google Scholar 

  16. Zhou, Y.; Zhang, J. T.; Ren, H.; Pan, Y.; Yan, Y. G.; Sun, F. C.; Wang, X. Y.; Wang, S. T.; Zhang, J. Mo doping induced metallic CoSe for enhanced electrocatalytic hydrogen evolution. Appl. Catal. B:Environ. 2020, 268, 118467.

    Article  CAS  Google Scholar 

  17. Chen, X. H.; Zhang, Q.; Wu, L. L.; Shen, L.; Fu, H. C.; Luo, J.; Li, X. L.; Lei, J. L.; Luo, H. Q.; Li, N. B. Regulation of the electronic structure of Co4N with novel Nb to form hierarchical porous nanosheets for electrocatalytic overall water splitting. Mater. Today Phys. 2020, 15, 100268.

    Article  Google Scholar 

  18. Xu, K.; Sun, Y. Q.; Sun, Y. M.; Zhang, Y. Q.; Jia, G. C.; Zhang, Q. H.; Gu, L.; Li, S. Z.; Li, Y.; Fan, H. J. Yin-Yang harmony: Metal and nonmetal dual-doping boosts electrocatalytic activity for alkaline hydrogen evolution. ACS Energy Lett. 2018, 3, 2750–2756.

    Article  CAS  Google Scholar 

  19. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

    Article  CAS  Google Scholar 

  20. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    Article  CAS  Google Scholar 

  21. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

    Article  CAS  Google Scholar 

  22. Zhang, R.; Wang, X. X.; Yu, S. J.; Wen, T.; Zhu, X. W.; Yang, F. X.; Sun, X. N.; Wang, X. K.; Hu, W. P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 2011, 29, 1605502.

    Article  Google Scholar 

  23. Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375–380.

    Article  CAS  Google Scholar 

  24. Wang, Y. P.; Ma, B.; Chen, Y. T. Iron phosphides supported on three-dimensional iron foam as an efficient electrocatalyst for water splitting reactions. J. Mater. Sci. 2019, 54, 14872–14883.

    Article  CAS  Google Scholar 

  25. Xiao, P.; Sk, M. A.; Thia, L.; Ge, X. M.; Lim, R. J.; Wang, J. Y.; Lim, K. H.; Wang, X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2014, 1, 2624–2629.

    Article  Google Scholar 

  26. Zhao, J. P.; Fu, B.; Li, X.; Ge, Z. H.; Ma, B.; Chen, Y. T. Construction of the Ni2P/MoP heterostructure as a high-performance cocatalyst for visible-light-driven hydrogen production. ACS Appl. Energy Mater. 2020, 3, 10910–10919.

    Article  CAS  Google Scholar 

  27. Ma, B.; Zhao, J. P.; Ge, Z. H.; Chen, Y. T.; Yuan, Z. H. 5 nm NiCoP nanoparticles coupled with g-C3N4 as high-performance photocatalyst for hydrogen evolution. Sci. China Mater. 2020, 63, 258–266.

    Article  CAS  Google Scholar 

  28. Callejas, J. F.; McEnaney, J. M.; Read, C. G.; Crompton, J. C.; Biacchi, A. J.; Popczun, E. J.; Gordon, T. R.; Lewis, N. S.; Schaak, R. E. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 2014, 8, 11101–11107.

    Article  CAS  Google Scholar 

  29. Xie, J. Q.; Ji, Y. Q.; Kang, J. H.; Sheng, J. L.; Mao, D. S.; Fu, X. Z.; Sun, R.; Wong, C. P. In situ growth of Cu(OH)2@FeOOH nanotube arrays on catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-sized energy storage devices. Energy Environ. Sci. 2019, 12, 194–205.

    Article  CAS  Google Scholar 

  30. Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed. 2014, 53, 9577–9581.

    Article  CAS  Google Scholar 

  31. Li, X.; Liu, P. F.; Zhang, L.; Zu, M. Y.; Yang, Y. X.; Yang, H. G. Enhancing alkaline hydrogen evolution reaction activity through NiMn3O4 nanocomposites. Chem. Commun. 2016, 52, 10566–10569.

    Article  CAS  Google Scholar 

  32. Wang, R.; Dong, X. Y.; Du, J.; Zhao, J. Y.; Zang, S. Q. MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 2018, 30, 1703711.

    Article  Google Scholar 

  33. Li, G. X.; Wang, J. G.; Yu, J. Y.; Liu, H.; Cao, Q.; Du, J. L.; Zhao, L. L.; Jia, J.; Liu, H.; Zhou, W. J. Ni-Ni3P nanoparticles embedded into N, P-doped carbon on 3D graphene frameworks via in situ phosphatization of saccharomycetes with multifunctional electrodes for electrocatalytic hydrogen production and anodic degradation. Appl. Catal. B:Environ. 2020, 261, 118147.

    Article  CAS  Google Scholar 

  34. Hou, C. C.; Chen, Q. Q.; Wang, C. J.; Liang, F.; Lin, Z. S.; Fu, W. F.; Chen, Y. Self-supported cedarlike semimetallic Cu3P nanoarrays as a 3D high-performance janus electrode for both oxygen and hydrogen evolution under basic conditions. ACS Appl. Mater. Interfaces 2016, 8, 23037–23048.

    Article  CAS  Google Scholar 

  35. Shang, L. M.; Lv, X. M.; Shen, H.; Shao, Z. Z.; Zheng, G. F. Selective carbon dioxide electroreduction to ethylene and ethanol by core-shell copper/cuprous oxide. J. Colloid Interface Sci. 2019, 552, 426–431.

    Article  CAS  Google Scholar 

  36. Song, S.; Yao, S. K.; Cao, J. H.; Di, L.; Wu, G. J.; Guan, N. J.; Li, L. D. Heterostructured Ni/NiO composite as a robust catalyst for the hydrogenation of levulinic acid to β-valerolactone. Appl. Catal. B:Environ. 2011, 217, 115–124.

    Article  Google Scholar 

  37. Jiang, X. C.; Li, H. M.; Li, S. L.; Huang, S. W.; Zhu, C. L.; Hou, L. X. Metal-organic framework-derived Ni-Co alloy@carbon microspheres as high-performance counter electrode catalysts for dye-sensitized solar cells. Chem. Eng. J. 2018, 334, 419–431.

    Article  CAS  Google Scholar 

  38. Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924.

    Article  CAS  Google Scholar 

  39. Shen, R. C.; Xie, J.; Ding, Y. N.; Liu, S. Y.; Adamski, A.; Chen, X. B.; Li, X. Carbon nanotube-supported Cu3P as high-efficiency and low-cost cocatalysts for exceptional semiconductor-free photocatalytic H2 evolution. ACS Sustainable Chem. Eng. 2019, 7, 3243–3250.

    Article  CAS  Google Scholar 

  40. Li, X.; Zhang, L.; Huang, M. R.; Wang, S. Y.; Li, X. M.; Zhu, H. W. Cobalt and nickel selenide nanowalls anchored on graphene as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2016, 4, 14789–14795.

    Article  CAS  Google Scholar 

  41. Li, F.; Han, G. F.; Noh, H. J.; Jeon, J. P.; Ahmad, I.; Chen, S. S.; Yang, C.; Bu, Y. F.; Fu, Z. P.; Lu, Y. L. et al. Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nat. Commun. 2019, 10, 4060.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51702234) and the Natural Science Foundation of Tianjin City (No. 18JCQNJC78800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yantao Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Li, X., Ma, B. et al. Cu3P@Ni core-shell heterostructure with modulated electronic structure for highly efficient hydrogen evolution. Nano Res. 15, 2935–2942 (2022). https://doi.org/10.1007/s12274-021-3915-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3915-9

Keywords

Navigation