Skip to main content
Log in

Rational cathode configuration with bilayer membranes to engineer current-collector-free high-areal-sulfur lithium-sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The application of light-weight current collectors is preferred because of the increased energy density of the batteries. Bearing it in mind, the cathode is designed with self-made paperlike memberane as current collector coupled with another interlayer to enable the high-energy-density lithium-sulfur batteries. Via a facile and green step-by-step methodology, the hybrid membrane is finalized successfully, consisting of reduced graphene oxide sheets covering paper-derived carbon (GPC) bearing Fe@Fe2O3 and Fe1−xS@Fe2O3 core-shell nanoparticles (FeFeO/FeSFeO@GPC). The film works as the current collector and interlayer simultaneously considering the porous and conductive features. As demonstrated by the electrochemical testing, the FeFeO/FeSFeO@GPC hybrid cell exhibits attractive cycling stability and superior rate capability. The cell configuration and structural/composition merits of FeFeO/FeSFeO@GPC film facilitate the faster reaction kinetics, conducive to the improvement of capacity retention. In view of the effective cathode design, the areal sulfur loading is increased to 10.46 mg·cm−2 and a reversible capacity of 6.67 mAh·cm−2 can be retained after 60 cycles at 0.1 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y. T.; Liu, S.; Li, G. R.; Gao, X. P. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 2021, 33, 2003955.

    Article  CAS  Google Scholar 

  2. Pan, Z. Y.; Brett, D. J. L.; He, G. J.; Parkin, I. P. Progress and perspectives of organosulfur for lithium-sulfur batteries. Adv. Energy Mater. 2022, 12, 2103483.

    Article  CAS  Google Scholar 

  3. Su, H.; Lu, L. Q.; Yang, M. Z.; Cai, F. P.; Liu, W. L.; Li, M.; Hu, X.; Ren, M. M.; Zhang, X.; Zhou, Z. Decorating CoSe2 on N-doped carbon nanotubes as catalysts and efficient polysulfides traps for LiS batteries. Chem. Eng. J. 2022, 429, 132167.

    Article  CAS  Google Scholar 

  4. Tsao, Y.; Gong, H. X.; Chen, S. C.; Chen, G.; Liu, Y. Z.; Gao, T. Z.; Cui, Y.; Bao, Z. N. A nickel-decorated carbon flower/sulfur cathode for lean-electrolyte lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2101449.

    Article  CAS  Google Scholar 

  5. Fang, R. P.; Chen, K.; Yin, L. C.; Sun, Z. H.; Li, F.; Cheng, H. M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 2019, 31, 1800863.

    Article  Google Scholar 

  6. Li, Q.; Guo, J. N.; Zhao, J.; Wang, C. C.; Yan, F. Porous nitrogen-doped carbon nanofibers assembled with nickel nanoparticles for lithium-sulfur batteries. Nanoscale 2019, 11, 647–655.

    Article  CAS  Google Scholar 

  7. Chadha, U.; Bhardwaj, P.; Padmanaban, S.; Suneel, R. M.; Milton, K.; Subair, N.; Pandey, A.; Khanna, M.; Srivastava, D. Review—Contemporary progresses in carbon-based electrode material in Li-S batteries. J. Electrochem. Soc. 2022, 169, 020530.

    Article  CAS  Google Scholar 

  8. He, Z. K.; Wan, T. T.; Luo, Y. H.; Liu, G. H.; Wu, L. L.; Li, F.; Zhang, Z. S.; Li, G. R.; Zhang, Y. G. Three- dimensional structural confinement design of conductive metal oxide for efficient sulfur host in lithium-sulfur batteries. Chem. Eng. J. 2022, 448, 137656.

    Article  CAS  Google Scholar 

  9. Hou, Q.; Wang, K. D.; Zheng, W. J.; Li, X. C.; Yu, M.; Jiang, H. L.; Dai, Y.; Chu, F. Y.; Jiang, X. B.; Zhu, D. et al. Eliminating bandgap between Cu-CeO2−x heterointerface enabling fast electron transfer and redox reaction in Li-S batteries. Energy Storage Mater. 2023, 63, 102983.

    Article  Google Scholar 

  10. Lei, J.; Liu, T.; Chen, J. J.; Zheng, M. S.; Zhang, Q.; Mao, B. W.; Dong, Q. F. Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li-S batteries. Chem 2020, 6, 2533–2557.

    Article  CAS  Google Scholar 

  11. Zhen, M. M.; Jiang, K. L.; Guo, S. Q.; Shen, B. X.; Liu, H. L. Suitable lithium polysulfides diffusion and adsorption on CNTs@TiO2-bronze nanosheets surface for high-performance lithium-sulfur batteries. Nano Res. 2022, 15, 933–941.

    Article  CAS  Google Scholar 

  12. Sun, T. T.; Zhao, X. M.; Li, B.; Shu, H. B.; Luo, L. P.; Xia, W. L.; Chen, M. F.; Zeng, P.; Yang, X. K.; Gao, P. et al. NiMoO4 nanosheets anchored on N-S doped carbon clothes with hierarchical structure as a bidirectional catalyst toward accelerating polysulfides conversion for Li-S battery. Adv. Funct. Mater. 2021, 31, 2101285.

    Article  CAS  Google Scholar 

  13. Liu, Y. P.; Ma, S. Y.; Liu, L. F.; Koch, J.; Rosebrock, M.; Li, T. R.; Bettels, F.; He, T.; Pfnür, H.; Bigall, N. C. et al. Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S batteries. Adv. Funct. Mater. 2020, 30, 2002462.

    Article  CAS  Google Scholar 

  14. Zeng, P.; Liu, C.; Zhao, X. F.; Yuan, C.; Chen, Y. G.; Lin, H. P.; Zhang, L. Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium-sulfur batteries. ACS Nano 2020, 14, 11558–11569.

    Article  CAS  Google Scholar 

  15. Zhao, Q.; Zhu, Q. Z.; Liu, Y.; Xu, B. Status and prospects of MXene-based lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2100457.

    Article  CAS  Google Scholar 

  16. Miao, Z. Y.; Li, Y. P.; Xiao, X. P.; Sun, Q. Z.; He, B.; Chen, X.; Liao, Y. Q.; Zhang, Y.; Yuan, L. X.; Yan, Z. J.; Li, Z.; Huang, Y. H. Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium-sulfur batteries. Energy Environ. Sci. 2022, 15, 2029–2038.

    Article  CAS  Google Scholar 

  17. Yang, H. J.; Qiao, Y.; Chang, Z.; He, P.; Zhou, H. S. Designing cation-solvent fully coordinated electrolyte for high-energy-density lithium-sulfur full cell based on solid-solid conversion. Angew. Chem., Int. Ed. 2021, 60, 17726–17734.

    Article  CAS  Google Scholar 

  18. Sun, Q.; Xi, B. J.; Li, J. Y.; Mao, H. Z.; Ma, X. J.; Liang, J. W.; Feng, J. K.; Xiong, S. L. Nitrogen-doped graphene-supported mixed transition-metal oxide porous particles to confine polysulfides for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800595.

    Article  Google Scholar 

  19. Qiao, Z. S.; Zhang, Y. G.; Meng, Z. H.; Xie, Q. S.; Lin, L.; Zheng, H. F.; Sa, B.; Lin, J.; Wang, L. S.; Peng, D. L. Anchoring polysulfides and accelerating redox reaction enabled by Fe-based compounds in lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2100970.

    Article  CAS  Google Scholar 

  20. Li, J. H.; Li, F. Y.; Pan, J. J.; Pan, J. D.; Liao, J. Y.; Li, H.; Dong, H. F.; Shi, K. X.; Liu, Q. B. Hollow Co3S4 nanocubes interconnected with carbon nanotubes as nanoreactors to accelerate polysulfide conversion for high-performance lithium-sulfur batteries. Ind. Eng. Chem. Res. 2023, 62, 4364–4372.

    Article  CAS  Google Scholar 

  21. Li, B.; Wang, P.; Xi, B. J.; Song, N.; An, X. G.; Chen, W. H.; Feng, J. K.; Xiong, S. L. In-sttu embedding CoTe catalyst into 1D–2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries. Nano Res. 2022, 15, 8972–8982

    Article  CAS  Google Scholar 

  22. Hong, X. D.; Wang, Y.; Liu, Y.; Fu, J. W.; Liang, J.; Dou, S. X. Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries. J. Energy Chem. 2020, 42, 144–168.

    Article  Google Scholar 

  23. Song, N.; Xi, B. J.; Wang, P.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium-sulfur batteries. Nano Res. 2022, 15, 1424–1432.

    Article  CAS  Google Scholar 

  24. Yuan, J.; Xi, B. J.; Wang, P.; Zhang, Z. C. Y.; Song, N.; An, X. G.; Liu, J.; Feng, J. K.; Xiong, S. L. Multifunctional atomic molybdenum on graphene with distinctive coordination to solve Li and S electrochemistry. Small 2022, 18, 2203947.

    Article  CAS  Google Scholar 

  25. Wang, P.; Zhang, Z. C. Y.; Song, N.; An, X. G.; Liu, J.; Feng, J. K.; Xi, B. J.; Xiong, S. L. WP nanocrystals on N,P dual-doped carbon nanosheets with deeply analyzed catalytic mechanisms for lithium-sulfur batteries. CCS Chem. 2023, 5, 397–411.

    Article  Google Scholar 

  26. Wang, Y.; Wang, P.; Yuan, J.; Song, N.; An, X. G.; Ma, X. J.; Feng, J. K.; Xi, B. J.; Xiong, S. L. Binary sulfiphilic nickel boride on boron-doped graphene with beneficial interfacial charge for accelerated LiS dynamics. Small 2023, 19, 2208281.

    Article  CAS  Google Scholar 

  27. Zhou, X.; Liu, T. T.; Zhao, G. F.; Yang, X. F.; Guo, H. Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance Li-S batteries. Energy Storage Mater. 2021, 40, 139–149.

    Article  Google Scholar 

  28. Wang, S. Y.; Wang, Z. W.; Chen, F. Z.; Peng, B.; Xu, J.; Li, J. Z.; Lv, Y. H.; Kang, Q.; Xia, A. L.; Ma, L. B. Electrocatalysts in lithium-sulfur batteries. NanoRes. 2023, 16, 4438–4467.

    CAS  Google Scholar 

  29. Tao, S.; Zhang, G. K.; Qian, B.; Yang, J.; Chu, S. Q.; Sun, C. C.; Wu, D. J.; Chu, W. S.; Song, L. Spectroscopically unraveling high-valence Ni-Fe catalytic synergism in NiSe2/FeSe2 heterostructure. Appl. Catal. B: Environ. 2023, 330, 122600.

    Article  CAS  Google Scholar 

  30. Zhang, L.; Liu, Y. C.; Zhao, Z. D.; Jiang, P. L.; Zhang, T.; Li, M. X.; Pan, S. X.; Tang, T. Y.; Wu, T. Q.; Liu, P. Y. et al. Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li-S batteries. ACS Nano 2020, 14, 8495–8507.

    Article  CAS  Google Scholar 

  31. Ji, L.; Wang, X.; Jia, Y. F.; Hu, Q. L.; Duan, L. M.; Geng, Z. B.; Niu, Z. Q.; Li, W. S.; Liu, J. H.; Zhang, Y. G. et al. Flexible electrocatalytic nanofiber membrane reactor for lithium/sulfur conversion chemistry. Adv. Funct. Mater. 2020, 30, 1910533.

    Article  CAS  Google Scholar 

  32. Wang, M. L.; Song, Y. Z.; Sun, Z. T.; Shao, Y. L.; Wei, C. H.; Xia, Z.; Tian, Z. N.; Liu, Z. F.; Sun, J. Y. Conductive and catalytic VTe2@MgO heterostructure as effective polysulfide promotor for lithium-sulfur batteries. ACS Nano 2019, 13, 13235–13243.

    Article  CAS  Google Scholar 

  33. Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Amal, R.; Wang, S. G.; Cheng, H. M.; Li, F. Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries. Energy Storage Mater. 2018, 10, 56–61.

    Article  Google Scholar 

  34. Zhang, C. Y.; Lu, Z. W.; Wang, Y. H.; Dai, Z.; Zhao, H.; Sun, G. Z.; Lan, W.; Pan, X. J.; Zhou, J. Y.; Xie, E. Q. Cooperative chemisorption of polysulfides via 2D hexagonal WS2-rimmed Co9S8 heterostructures for lithium-sulfur batteries. Chem. Eng. J. 2020, 392, 123734.

    Article  CAS  Google Scholar 

  35. Shen, N.; Sun, H. X.; Li, B. Y.; Xi, B. J.; An, X. G.; Li, J. F.; Xiong, S. L. Dual- functional hosts for polysulfides conversion and lithium plating/stripping towards lithium-sulfur full cells. Chem.—Eur. J. 2023, 29, e202203031.

    Article  CAS  Google Scholar 

  36. Sun, X. X.; Liu, S. K.; Sun, W. W.; Zheng, C. M. Emerging multifunctional iron-based nanomaterials as polysulfides adsorbent and sulfur species catalyst for lithium-sulfur batteries—A mini-review. Chin. Chem. Lett. 2023, 34, 107501.

    Article  CAS  Google Scholar 

  37. Qiao, Z. S.; Zhou, F.; Zhang, Q. F.; Pei, F.; Zheng, H. F.; Xu, W. J.; Liu, P. F.; Ma, Y. T.; Xie, Q. S.; Wang, L. S. et al. Chemisorption and electrocatalytic effect from CoxSny alloy for high performance lithium sulfur batteries. Energy Storage Mater. 2019, 23, 62–71.

    Article  Google Scholar 

  38. Hou, Y. L.; Zhang, J.; Qin, T.; Zeng, R.; Guan, H. B.; Wang, S. G.; Zhao, D. L. Spindle-like Fe7S8/C anchored on S-doped graphene nanosheets as a superior long-life and high-rate anode for lithium-ion batteries. Appl. Surf. Sci. 2022, 599, 154042.

    Article  CAS  Google Scholar 

  39. Huang, W.; Li, S.; Cao, X. Y.; Hou, C. Y.; Zhang, Z.; Feng, J. K.; Ci, L.; Si, P. C.; Chi, Q. J. Metal- organic framework derived iron sulfide-carbon core-shell nanorods as a conversion-type battery material. ACS Sustain. Chem. Eng. 2017, 5, 5039–5048.

    Article  CAS  Google Scholar 

  40. Shangguan, E. B.; Guo, L. T.; Li, F.; Wang, Q.; Li, J.; Li, Q. M.; Chang, Z. R.; Yuan, X. Z. FeS anchored reduced graphene oxide nanosheets as advanced anode material with superior high-rate performance for alkaline secondary batteries. J. Power Sources 2016, 327, 187–195.

    Article  CAS  Google Scholar 

  41. Liu, X. W.; Li, H. R.; Gao, S. S.; Bai, Z. Y.; Tian, J. Y. Peroxymonosulfate activation by different iron sulfides for bisphenol—A degradation: Performance and mechanism. Sep. Purif. Technol. 2022, 289, 120751.

    Article  CAS  Google Scholar 

  42. Zhang, X. M.; Li, G. R.; Zhang, Y. G.; Luo, D.; Yu, A. P.; Wang, X.; Chen, Z. W. Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries. Nano Energy 2021, 86, 106094.

    Article  CAS  Google Scholar 

  43. Gao, R. H.; Zhang, M. T.; Han, Z. Y.; Xiao, X.; Wu, X. R.; Piao, Z. H.; Lao, Z. J.; Nie, L.; Wang, S. G.; Zhou, G. M. Unraveling the coupling effect between cathode and anode toward practical lithium-sulfur batteries. Adv. Mater. 2024, 36, 2303610.

    Article  CAS  Google Scholar 

  44. Lao, Z. J.; Han, Z. Y.; Ma, J. B.; Zhang, M. T.; Wu, X. R.; Jia, Y. Y.; Gao, R. H.; Zhu, Y. F.; Xiao, X.; Yu, K. et al. Band structure engineering and orbital orientation control constructing dual active sites for efficient sulfur redox reaction. Adv. Mater., in press, https://doi.org/10.1002/adma.202309024.

  45. Han, Z. Y.; Gao, R. H.; Wang, T. S.; Tao, S. Y.; Jia, Y. Y.; Lao, Z. J.; Zhang, M. T.; Zhou, J. Q.; Li, C.; Piao, Z. H. et al. Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics. Nat. Catal. 2023, 6, 1073–1086.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports provided by the National Natural Science Fund of China (No. U1764258), the Taishan Scholar Project Foundation of Shandong Province (No. ts20190908), and the Natural Science Foundation of Shandong Province (No. ZR2021ZD05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianmei Han or Shenglin Xiong.

Electronic supplementary material

12274_2024_6472_MOESM1_ESM.pdf

Rational cathode configuration with bilayer membranes to engineer current-collector-free high-areal-sulfur lithium-sulfur batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Zhang, H., Wang, P. et al. Rational cathode configuration with bilayer membranes to engineer current-collector-free high-areal-sulfur lithium-sulfur batteries. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6472-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6472-1

Keywords

Navigation