Skip to main content
Log in

Two-dimensional magnetic materials for spintronic applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Spintronic devices are driving new paradigms of bio-inspired, energy efficient computation like neuromorphic stochastic computing and in-memory computing. They have also emerged as key candidates for non-volatile memories for embedded systems as well as alternatives to persistent memories. To meet the growing demands from such diverse applications, there is need for innovation in materials and device designs which can be scaled and adapted according to the application. Two-dimensional (2D) magnetic materials address challenges facing bulk magnet systems by offering scalability while maintaining device integrity and allowing efficient control of magnetism. In this review, we highlight the progress made in experimental studies on 2D magnetic materials towards their integration into spintronic devices. We provide an account of the various relevant material discoveries, demonstrations of current and voltage-based control of magnetism and reported device systems, while also discussing the challenges and opportunities towards integration of 2D magnetic materials in commercial spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

    Article  ADS  Google Scholar 

  2. Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Baibich, M. N.; Broto, J. M.; Fert, A.; Van Dau, F. N.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472–2475.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Chappert, C.; Fert, A.; Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 2007, 6, 813–823.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Camsari, K. Y.; Sutton, B. M.; Datta, S. P-bits for probabilistic spin logic. Appl. Phys. Rev. 2019, 6, 011305.

    Article  ADS  Google Scholar 

  6. Sengupta, A.; Roy, K. Encoding neural and synaptic functionalities in electron spin: A pathway to efficient neuromorphic computing. Appl. Phys. Rev. 2017, 4, 041105.

    Article  ADS  Google Scholar 

  7. Chumak, A. V.; Vasyuchka, V. I.; Serga, A. A.; Hillebrands, B. Magnon spintronics. Nat. Phys. 2015, 11, 453–461.

    Article  CAS  Google Scholar 

  8. Locatelli, N.; Cros, V.; Grollier, J. Spin-torque building blocks. Nat. Mater. 2014, 13, 11–20.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Loss, D.; DiVincenzo, D. P.; DiVincenzo, P. Quantum computation with quantum dots. Phys. Rev. A 1998, 57, 120–126.

    Article  ADS  CAS  Google Scholar 

  10. Jung, S.; Lee, H.; Myung, S.; Kim, H.; Yoon, S. K.; Kwon, S. W.; Ju, Y. M.; Kim, M.; Yi, W.; Han, S. et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 2022, 601, 211–216.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Huang, K. F.; Wang, D. S.; Tsai, M. H.; Lin, H. H.; Lai, C. H. Initialization-free multilevel states driven by spin-orbit torque switching. Adv. Mater. 2017, 29, 1601575.

    Article  Google Scholar 

  12. Liu, J. H.; Xu, T.; Feng, H. M.; Zhao, L.; Tang, J. S.; Fang, L.; Jiang, W. J. Compensated ferrimagnet based artificial synapse and neuron for ultrafast neuromorphic computing. Adv. Funct. Mater. 2022, 32, 2107870.

    Article  CAS  Google Scholar 

  13. Zhou, J.; Zhao, T. Y.; Shu, X. Y.; Liu, L.; Lin, W. N.; Chen, S. H.; Shi, S.; Yan, X. B.; Liu, X. G.; Chen, J. S. Spin-orbit torque-induced domain nucleation for neuromorphic computing. Adv. Mater. 2021, 33, 2103672.

    Article  CAS  Google Scholar 

  14. Cao, Y.; Rushforth, A.; Sheng, Y.; Zheng, H. Z.; Wang, K. Y. Tuning a binary ferromagnet into a multistate synapse with spin-orbit-torque-induced plasticity. Adv. Funct. Mater. 2019, 29, 1808104.

    Article  Google Scholar 

  15. Kurenkov, A.; DuttaGupta, S.; Zhang, C. L.; Fukami, S.; Horio, Y.; Ohno, H. Artificial neuron and synapse realized in an antiferromagnet/ferromagnet heterostructure using dynamics of spin-orbit torque switching. Adv. Mater. 2019, 31, 1900636.

    Article  Google Scholar 

  16. Mishra, R.; Kumar, D.; Yang, H. Oxygen-migration-based spintronic device emulating a biological synapse. Phys. Rev. Appl. 2019, 11, 054065.

    Article  ADS  CAS  Google Scholar 

  17. Cai, J. L.; Fang, B.; Zhang, L. K.; Lv, W. X.; Zhang, B. S.; Zhou, T. J.; Finocchio, G.; Zeng, Z. M. Voltage-controlled spintronic stochastic neuron based on a magnetic tunnel junction. Phys. Rev. Appl. 2019, 11, 034015.

    Article  ADS  CAS  Google Scholar 

  18. Borders, W. A.; Pervaiz, A. Z.; Fukami, S.; Camsari, K. Y.; Ohno, H.; Datta, S. Integer factorization using stochastic magnetic tunnel junctions. Nature 2019, 573, 390–393.

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Gajek, M.; Nowak, J. J.; Sun, J. Z.; Trouilloud, P. L.; O’Sullivan, E. J.; Abraham, D. W.; Gaidis, M. C.; Hu, G.; Brown, S.; Zhu, Y. et al. Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy. Appl. Phys. Lett. 2012, 100, 132408.

    Article  ADS  Google Scholar 

  20. Safranski, C.; Kaiser, J.; Trouilloud, P.; Hashemi, P.; Hu, G. H.; Sun, J. Z. Demonstration of nanosecond operation in stochastic magnetic tunnel junctions. Nano Lett. 2021, 21, 2040–2045.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Safranski, C.; Hu, G. H.; Sun, J. Z.; Hashemi, P.; Brown, S. L.; Buzi, L.; D’Emic, C. P.; Edwards, E. R. J.; Galligan, E.; Gottwald, M. G. et al. Reliable sub-nanosecond switching in magnetic tunnel junctions for MRAM applications. IEEE Trans. Electron Devices 2022, 69, 7180–7183.

    Article  ADS  Google Scholar 

  22. Sarkar, D.; Xie, X. J.; Liu, W.; Cao, W.; Kang, J. H.; Gong, Y. J.; Kraemer, S.; Ajayan, P. M.; Banerjee, K. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 2015, 526, 91–95.

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Liu, C. S.; Chen, H. W.; Wang, S. Y.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Pillai, S. C.; Ganguly, P. 2D Materials for Energy Storage and Conversion; IOP Publishing: Bristol, 2021.

    Book  Google Scholar 

  25. Kajale, S. N.; Yadav, S.; Cai, Y. B.; Joy, B.; Sarkar, D. 2D material based field effect transistors and nanoelectromechanical systems for sensing applications. iScience 2021, 24, 103513

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 2014, 8, 3992–4003.

    Article  CAS  PubMed  Google Scholar 

  27. Yang, H.; Valenzuela, S. O.; Chshiev, M.; Couet, S.; Dieny, B.; Dlubak, B.; Fert, A.; Garello, K.; Jamet, M.; Jeong, D. E. et al. Two-dimensional materials prospects for non-volatile spintronic memories. Nature 2022, 606, 663–673.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

    Article  CAS  PubMed  Google Scholar 

  29. Khan, Y.; Obaidulla, S. M.; Habib, M. R.; Gayen, A.; Liang, T.; Wang, X. F.; Xu, M. S. Recent breakthroughs in two-dimensional van der Waals magnetic materials and emerging applications. Nano Today 2020, 34, 100902.

    Article  CAS  Google Scholar 

  30. Li, H.; Ruan, S. C.; Zeng, Y. J. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Adv. Mater. 2019, 31, 1900065.

    Article  Google Scholar 

  31. Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Argyres, P. N. Theory of the Faraday and Kerr effects in ferromagnetics. Phys. Rev. 1955, 97, 334–345.

    Article  ADS  Google Scholar 

  33. Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Fei, Z. Y.; Huang, B.; Malinowski, P.; Wang, W. B.; Song, T. C.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X. Y.; May, A. F. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782.

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Gupta, V.; Cham, T. M.; Stiehl, G. M.; Bose, A.; Mittelstaedt, J. A.; Kang, K. F.; Jiang, S. W.; Mak, K. F.; Shan, J.; Buhrman, R. A. et al. Manipulation of the van der Waals magnet Cr2Ge2Te6 by spinorbit torques. Nano Lett. 2020, 20, 7482–7488.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Klein, D. R.; MacNeill, D.; Lado, J. L.; Soriano, D.; Navarro-Moratalla, E.; Watanabe, K.; Taniguchi, T.; Manni, S.; Canfield, P.; Fernández-Rossier, J. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 2018, 360, 1218–1222.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Thiel, L.; Wang, Z.; Tschudin, M. A.; Rohner, D.; Gutiérrez-Lezama, I.; Ubrig, N.; Gibertini, M.; Giannini, E.; Morpurgo, A. F.; Maletinsky, P. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 2019, 364, 973–976.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Chen, H.; Asif, S.; Dolui, K.; Wang, Y.; Támara-Isaza, J.; Goli, V. M. L. D. P.; Whalen, M.; Wang, X. H.; Chen, Z. J.; Zhang, H. Q. et al. Above-room-temperature ferromagnetism in thin van der Waals flakes of cobalt-substituted Fe5GeTe2. ACS Appl. Mater. Interfaces 2023, 15, 3287–3296.

    Article  CAS  PubMed  Google Scholar 

  40. Huang, M. Q.; Zhou, J. C.; Chen, D.; Lu, H. Y.; McLaughlin, N. J.; Li, S. L.; Alghamdi, M.; Djugba, D.; Shi, J.; Wang, H. et al. Wide field imaging of van der Waals ferromagnet Fe3GeTe2 by spin defects in hexagonal boron nitride. Nat. Commun. 2022, 13, 5369.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kumar, P.; Fabre, F.; Durand, A.; Clua-Provost, T.; Li, J.; Edgar, J. H.; Rougemaille, N.; Coraux, J.; Marie, X.; Renucci, P. et al. Magnetic imaging with spin defects in hexagonal boron nitride. Phys. Rev. Appl. 2022, 18, L061002.

    Article  ADS  CAS  Google Scholar 

  42. Healey, A. J.; Scholten, S. C.; Yang, T.; Scott, J. A.; Abrahams, G. J.; Robertson, I. O.; Hou, X. F.; Guo, Y. F.; Rahman, S.; Lu, Y. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 2023, 19, 87–91.

    Article  CAS  Google Scholar 

  43. Mermin, N. D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136.

    Article  ADS  CAS  Google Scholar 

  44. Hohenberg, P. C. Existence of long-range order in one and two dimensions. Phys. Rev. 1967, 158, 383–386.

    Article  ADS  CAS  Google Scholar 

  45. Onsager, L. Crystal statistics I. A two-dimensional model with an order-disorder transition. Phys. Rev. 1944, 65, 117–149.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  46. Henkel, M.; Andrieu, S.; Bauer, P.; Piecuch, M. Finite-size scaling in thin Fe/Ir(100) layers. Phys. Rev. Lett. 1998, 80, 4783–4786.

    Article  ADS  CAS  Google Scholar 

  47. Zhang, R. J.; Willis, R. F. Thickness-dependent curie temperatures of ultrathin magnetic films: Effect of the range of spin-spin interactions. Phys. Rev. Lett. 2001, 86, 2665–2668.

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Jiang, X.; Liu, Q. X.; Xing, J. P.; Liu, N. S.; Guo, Y.; Liu, Z. F.; Zhao, J. J. Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Appl. Phys. Rev. 2021, 8, 031305.

    Article  ADS  CAS  Google Scholar 

  49. Carteaux, V.; Brunet, D.; Ouvrard, G.; Andre, G. Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6. J. Phys. Condens. Matter 1995, 7, 69–87.

    Article  ADS  CAS  Google Scholar 

  50. Sun, Y.; Xiao, R. C.; Lin, G. T.; Zhang, R. R.; Ling, L. S.; Ma, Z. W.; Luo, X.; Lu, W. J.; Sun, Y. P.; Sheng, Z. G. Effects of hydrostatic pressure on spin-lattice coupling in two-dimensional ferromagnetic Cr2Ge2Te6. Appl. Phys. Lett. 2018, 112, 072409.

    Article  ADS  Google Scholar 

  51. Verzhbitskiy, I. A.; Kurebayashi, H.; Cheng, H. X.; Zhou, J.; Khan, S.; Feng, Y. P.; Eda, G. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron. 2020, 3, 460–465.

    Article  CAS  Google Scholar 

  52. Wang, N. Z.; Tang, H. B.; Shi, M. Z.; Zhang, H.; Zhuo, W. Z.; Liu, D. Y.; Meng, F. B.; Ma, L. K.; Ying, J. J.; Zou, L. J. et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced curie temperature in Cr2Ge2Te6 via organic ion intercalation. J. Am. Chem. Soc. 2019, 141, 17166–17173.

    Article  CAS  PubMed  Google Scholar 

  53. Mak, K. F.; Shan, J.; Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 2019, 1, 646–661.

    Article  Google Scholar 

  54. Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Jiang, S. W.; Shan, J.; Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 2018, 17, 406–410.

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Mak, K. F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553.

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Li, T. X.; Jiang, S. W.; Sivadas, N.; Wang, Z. F.; Xu, Y.; Weber, D.; Goldberger, J. E.; Watanabe, K.; Taniguchi, T.; Fennie, C. J. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 2019, 18, 1303–1308.

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Lado, J. L.; Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 2017, 4, 035002.

    Article  Google Scholar 

  59. Niu, B.; Su, T.; Francisco, B. A.; Ghosh, S.; Kargar, F.; Huang, X.; Lohmann, M.; Li, J. X.; Xu, Y. D.; Taniguchi, T. et al. Coexistence of magnetic orders in two-dimensional magnet CrI3. Nano Lett. 2020, 20, 553–558.

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Liu, Y.; Wu, L. J.; Tong, X.; Li, J.; Tao, J.; Zhu, Y. M.; Petrovic, C. Thickness-dependent magnetic order in CrI3 single crystals. Sci. Rep. 2019, 9, 13599.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  61. Soriano, D.; Cardoso, C.; Fernández-Rossier, J. Interplay between interlayer exchange and stacking in CrI3 bilayers. Solid State Commun. 2019, 299, 113662.

    Article  CAS  Google Scholar 

  62. Jiang, P. H.; Wang, C.; Chen, D. C.; Zhong, Z. C.; Yuan, Z.; Lu, Z. Y.; Ji, W. Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B 2019, 99, 144401.

    Article  ADS  CAS  Google Scholar 

  63. Kumar Gudelli, V.; Guo, G. Y. Magnetism and magneto-optical effects in bulk and few-layer CrI3: A theoretical GGA + U study. New J. Phys. 2019, 21, 053012.

    Article  ADS  Google Scholar 

  64. Meseguer-Sánchez, J.; Popescu, C.; García-Muñoz, J. L.; Luetkens, H.; Taniashvili, G.; Navarro-Moratalla, E.; Guguchia, Z.; Santos, E. J. G. Coexistence of structural and magnetic phases in van der Waals magnet CrI3. Nat. Commun. 2021, 12, 6265.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  65. Tan, C.; Lee, J.; Jung, S. G.; Park, T.; Albarakati, S.; Partridge, J.; Field, M. R.; McCulloch, D. G.; Wang, L.; Lee, C. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 2018, 9, 1554.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. Liu, S. S.; Yuan, X.; Zou, Y. C.; Sheng, Y.; Huang, C.; Zhang, E. Z.; Ling, J. W.; Liu, Y. W.; Wang, W. Y.; Zhang, C. et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. npj 2D Mater. Appl. 2017, 1, 30.

    Article  ADS  Google Scholar 

  67. Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Seo, J.; Kim, D. Y.; An, E. S.; Kim, K.; Kim, G. Y.; Hwang, S. Y.; Kim, D. W.; Jang, B. G.; Kim, H.; Eom, G. et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 2020, 6, eaay8912.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  69. Wang, H. T.; Lu, H. C.; Guo, Z. X.; Li, A.; Wu, P. C.; Li, J.; Xie, W. R.; Sun, Z. M.; Li, P.; Damas, H. et al. Interfacial engineering of ferromagnetism in wafer-scale van der Waals Fe4GeTe2 far above room temperature. Nat. Commun. 2023, 14, 2483.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. May, A. F.; Ovchinnikov, D.; Zheng, Q.; Hermann, R.; Calder, S.; Huang, B.; Fei, Z. Y.; Liu, Y. H.; Xu, X. D.; McGuire, M. A. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 2019, 13, 4436–4442.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, G. J.; Guo, F.; Wu, H.; Wen, X. K.; Yang, L.; Jin, W.; Zhang, W. F.; Chang, H. X. Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy. Nat. Commun. 2022, 13, 5067.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wen, Y.; Liu, Z. H.; Zhang, Y.; Xia, C. X.; Zhai, B. X.; Zhang, X. H.; Zhai, G. H.; Shen, C.; He, P.; Cheng, R. Q. et al. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett. 2020, 20, 3130–3139.

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Chua, R.; Zhou, J.; Yu, X. J.; Yu, W.; Gou, J.; Zhu, R.; Zhang, L.; Liu, M. Z.; Breese, M. B. H.; Chen, W. et al. Room temperature ferromagnetism of monolayer chromium telluride with perpendicular magnetic anisotropy. Adv. Mater. 2021, 33, 2103360.

    Article  CAS  Google Scholar 

  74. Sun, X. D.; Li, W. Y.; Wang, X.; Sui, Q.; Zhang, T. Y.; Wang, Z.; Liu, L.; Li, D.; Feng, S.; Zhong, S. Y. et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 2020, 13, 3358–3363.

    Article  ADS  CAS  Google Scholar 

  75. Meng, L. J.; Zhou, Z.; Xu, M. Q.; Yang, S. Q.; Si, K. P.; Liu, L. X.; Wang, X. G.; Jiang, H. N.; Li, B. X.; Qin, P. X. et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun. 2021, 12, 809.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Seo, J.; An, E. S.; Park, T.; Hwang, S. Y.; Kim, G. Y.; Song, K.; Noh, W. S.; Kim, J. Y.; Choi, G. S.; Choi, M. et al. Tunable high-temperature itinerant antiferromagnetism in a van der Waals magnet. Nat. Commun. 2021, 12, 2844.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chu, J. W.; Zhang, Y.; Wen, Y.; Qiao, R. X.; Wu, C. C.; He, P.; Yin, L.; Cheng, R. Q.; Wang, F.; Wang, Z. X. et al. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett. 2019, 19, 2154–2161.

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Cui, F. F.; Zhao, X. X.; Xu, J. J.; Tang, B.; Shang, Q. Y.; Shi, J. P.; Huan, Y. H.; Liao, J. H.; Chen, Q.; Hou, Y. L. et al. Controlled growth and thickness-dependent conduction-type transition of 2D ferrimagnetic Cr2S3 semiconductors. Adv. Mater. 2020, 32, 1905896.

    Article  CAS  Google Scholar 

  79. Roy, A.; Guchhait, S.; Dey, R.; Pramanik, T.; Hsieh, C. C.; Rai, A.; Banerjee, S. K. Perpendicular magnetic anisotropy and spin glasslike behavior in molecular beam epitaxy grown chromium telluride thin films. ACS Nano 2015, 9, 3772–3779.

    Article  CAS  PubMed  Google Scholar 

  80. Burn, D. M.; Duffy, L. B.; Fujita, R.; Zhang, S. L.; Figueroa, A. I.; Herrero-Martin, J.; van der Laan, G.; Hesjedal, T. Cr2Te3 thin films for integration in magnetic topological insulator heterostructures. Sci. Rep. 2019, 9, 10793.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, H. X.; Wang, L. J.; Chen, J. S.; Yu, T.; Zhou, L.; Qiu, Y.; He, H. T.; Ye, F.; Sou, I. K.; Wang, G. Molecular beam epitaxy grown Cr2Te3 thin films with tunable curie temperatures for spintronic devices. ACS Appl. Nano Mater. 2019, 2, 6809–6817.

    Article  CAS  Google Scholar 

  82. Chen, C.; Chen, X. D.; Wu, C. W.; Wang, X.; Ping, Y.; Wei, X.; Zhou, X.; Lu, J. B.; Zhu, L. J.; Zhou, J. D. et al. Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv. Mater. 2022, 34, 2107512.

    Article  CAS  Google Scholar 

  83. Wang, Z.; Gibertini, M.; Dumcenco, D.; Taniguchi, T.; Watanabe, K.; Giannini, E.; Morpurgo, A. F. Determining the phase diagram of atomically thin layered antiferromagnet CrCl3. Nat. Nanotechnol. 2019, 14, 1116–1122.

    Article  ADS  PubMed  Google Scholar 

  84. Bedoya-Pinto, A.; Ji, J. R.; Pandeya, A. K.; Gargiani, P.; Valvidares, M.; Sessi, P.; Taylor, J. M.; Radu, F.; Chang, K.; Parkin, S. S. P. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 2021, 374, 616–620.

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Son, J.; Son, S.; Park, P.; Kim, M.; Tao, Z.; Oh, J.; Lee, T.; Lee, S.; Kim, J.; Zhang, K. X. et al. Air-stable and layer-dependent ferromagnetism in atomically thin van der Waals CrPS4. ACS Nano 2021, 15, 16904–16912.

    Article  CAS  PubMed  Google Scholar 

  86. Xiao, H.; Zhuang, W. Z.; Loh, L.; Liang, T.; Gayen, A.; Ye, P.; Bosman, M.; Eda, G.; Wang, X. F.; Xu, M. S. Van der Waals epitaxial growth of 2D layered room-temperature ferromagnetic CrS2. Adv. Mater. Interfaces 2022, 9, 2201353.

    Article  CAS  Google Scholar 

  87. Lee, K.; Dismukes, A. H.; Telford, E. J.; Wiscons, R. A.; Wang, J.; Xu, X. D.; Nuckolls, C.; Dean, C. R.; Roy, X.; Zhu, X. Y. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 2021, 21, 3511–3517.

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Telford, E. J.; Dismukes, A. H.; Dudley, R. L.; Wiscons, R. A.; Lee, K.; Chica, D. G.; Ziebel, M. E.; Han, M. G.; Yu, J.; Shabani, S. et al. Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor. Nat. Mater. 2022, 21, 754–760.

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Zhang, Y.; Chu, J. W.; Yin, L.; Shifa, T. A.; Cheng, Z. Z.; Cheng, R. Q.; Wang, F.; Wen, Y.; Zhan, X. Y.; Wang, Z. X. et al. Ultrathin magnetic 2D single-crystal CrSe. Adv. Mater. 2019, 31, 1900056.

    Article  Google Scholar 

  90. Wang, M. S.; Kang, L. X.; Su, J. W.; Zhang, L. M.; Dai, H. W.; Cheng, H.; Han, X. T.; Zhai, T. Y.; Liu, Z.; Han, J. B. Two-dimensional ferromagnetism in CrTe flakes down to atomically thin layers. Nanoscale 2020, 12, 16427–16432.

    Article  CAS  PubMed  Google Scholar 

  91. Zhao, D. P.; Zhang, L. G.; Malik, I. A.; Liao, M. H.; Cui, W. Q.; Cai, X. Q.; Zheng, C.; Li, L. X.; Hu, X. P.; Zhang, D. et al. Observation of unconventional anomalous Hall effect in epitaxial CrTe thin films. Nano Res. 2018, 11, 3116–3121.

    Article  CAS  Google Scholar 

  92. Zhao, Z. J.; Zhou, J.; Liu, L. H.; Liu, N. S.; Huang, J. Q.; Zhang, B.; Li, W.; Zeng, Y.; Zhang, T.; Ji, W. et al. Two-dimensional room-temperature magnetic nonstoichiometric Fe7Se8 nanocrystals: Controllable synthesis and magnetic behavior. Nano Lett. 2022, 22, 1242–1250.

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Husremović, S.; Groschner, C. K.; Inzani, K.; Craig, I. M.; Bustillo, K. C.; Ercius, P.; Kazmierczak, N. P.; Syndikus, J.; Van Winkle, M.; Aloni, S. et al. Hard ferromagnetism down to the thinnest limit of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 2022, 144, 12167–12176.

    Article  PubMed  Google Scholar 

  94. Deng, Y. J.; Yu, Y. J.; Shi, M. Z.; Guo, Z. X.; Xu, Z. H.; Wang, J.; Chen, X. H.; Zhang, Y. B. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 2020, 367, 895–900.

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Long, G.; Henck, H.; Gibertini, M.; Dumcenco, D.; Wang, Z.; Taniguchi, T.; Watanabe, K.; Giannini, E.; Morpurgo, A. F. Persistence of magnetism in atomically thin MnPS3 crystals. Nano Lett. 2020, 20, 2452–2459.

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Ni, Z. L.; Haglund, A. V.; Wang, H.; Xu, B.; Bernhard, C.; Mandrus, D. G.; Qian, X.; Mele, E. J.; Kane, C. L.; Wu, L. Imaging the Néel vector switching in the monolayer antiferromagnet MnPSe3 with strain-controlled ising order. Nat. Nanotechnol. 2021, 16, 782–787.

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Aapro, M.; Huda, M. N.; Karthikeyan, J.; Kezilebieke, S.; Ganguli, S. C.; Herrero, H. G.; Huang, X.; Liljeroth, P.; Komsa, H. P. Synthesis and properties of monolayer mnse with unusual atomic structure and antiferromagnetic ordering. ACS Nano 2021, 15, 13794–13802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Su, J. W.; Wang, M. S.; Liu, G. H.; Li, H. Q.; Han, J. B.; Zhai, T. Y. Air-stable 2D intrinsic ferromagnetic Ta3FeS6 with four months durability. Adv. Sci. 2020, 7, 2001722.

    Article  CAS  Google Scholar 

  99. Zhang, F.; Zheng, B. Y.; Sebastian, A.; Olson, D. H.; Liu, M. Z.; Fujisawa, K.; Pham, Y. T. H.; Jimenez, V. O.; Kalappattil, V.; Miao, L. X. et al. Monolayer vanadium-doped tungsten disulfide: A room-temperature dilute magnetic semiconductor. Adv. Sci. 2020, 7, 2001174.

    Article  CAS  Google Scholar 

  100. Pham, Y. T. H.; Liu, M. Z.; Jimenez, V. O.; Yu, Z. H.; Kalappattil, V.; Zhang, F.; Wang, K.; Williams, T.; Terrones, M.; Phan, M. H. Tunable ferromagnetism and thermally induced spin flip in vanadium-doped tungsten diselenide monolayers at room temperature. Adv. Mater. 2020, 32, 2003607.

    Article  CAS  Google Scholar 

  101. Lyu, B.; Gao, Y. F.; Zhang, Y. J.; Wang, L.; Wu, X. H.; Chen, Y. N.; Zhang, J. S.; Li, G. M.; Huang, Q. L.; Zhang, N. P. et al. Probing the ferromagnetism and spin wave gap in VI3 by helicity-resolved Raman spectroscopy. Nano Lett. 2020, 20, 6024–6031.

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Lin, Z.; Huang, B.; Hwangbo, K.; Jiang, Q. N.; Zhang, Q.; Liu, Z. Y.; Fei, Z. Y.; Lv, H. Y.; Millis, A.; McGuire, M. et al. Magnetism and its structural coupling effects in 2D ising ferromagnetic insulator VI3. Nano Lett. 2021, 21, 9180–9186.

    Article  ADS  CAS  PubMed  Google Scholar 

  103. Chua, R.; Yang, J.; He, X. Y.; Yu, X. J.; Yu, W.; Bussolotti, F.; Wong, P. K. J.; Loh, K. P.; Breese, M. B. H.; Goh, K. E. J. et al. Can reconstructed se-deficient line defects in monolayer VSe2 induce magnetism. Adv. Mater. 2020, 32, 2000693.

    Article  CAS  Google Scholar 

  104. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 1996, 54, 9353–9358.

    Article  ADS  CAS  Google Scholar 

  105. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 1996, 159, L1–L7.

    Article  ADS  CAS  Google Scholar 

  106. Kent, A. D.; Worledge, D. C. A new spin on magnetic memories. Nat. Nanotechnol. 2015, 10, 187–191.

    Article  ADS  CAS  PubMed  Google Scholar 

  107. Manchon, A.; Železný, J.; Miron, I. M.; Jungwirth, T.; Sinova, J.; Thiaville, A.; Garello, K.; Gambardella, P. Current-induced spinorbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 2019, 91, 035004.

    Article  ADS  CAS  Google Scholar 

  108. Ramaswamy, R.; Lee, J. M.; Cai, K. M.; Yang, H. Recent advances in spin-orbit torques: Moving towards device applications. Appl. Phys. Rev. 2018, 5, 031107.

    Article  ADS  Google Scholar 

  109. Alghamdi, M.; Lohmann, M.; Li, J. X.; Jothi, P. R.; Shao, Q. M.; Aldosary, M.; Su, T.; Fokwa, B. P. T.; Shi, J. Highly efficient spinorbit torque and switching of layered ferromagnet Fe3GeTe2. Nano Lett. 2019, 19, 4400–4405.

    Article  ADS  CAS  PubMed  Google Scholar 

  110. Wang, X.; Tang, J.; Xia, X. X.; He, C. L.; Zhang, J. W.; Liu, Y. Z.; Wan, C. H.; Fang, C.; Guo, C. Y.; Yang, W. L. et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 2019, 5, eaaw8904.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ostwal, V.; Shen, T. T.; Appenzeller, J. Efficient spin-orbit torque switching of the semiconducting van der Waals ferromagnet Cr2Ge2Te6. Adv. Mater. 2020, 32, 1906021.

    Article  CAS  Google Scholar 

  112. Kajale, S. N.; Nguyen, T.; Chao, C. A.; Bono, D. C.; Boonkird, A.; Li, M. D.; Sarkar, D. Current-induced deterministic switching of van der Waals ferromagnet at room temperature. arXiv: 2306.14355. arXiv.org e-Print archive. https://doi.org/10.48550/arXiv.2306.14355 (accessed Jul 29, 2023).

  113. Li, W. H.; Zhu, W. K.; Zhang, G. J.; Wu, H.; Zhu, S. G.; Li, R. Z.; Zhang, E. Z.; Zhang, X. M.; Deng, Y. C.; Zhang, J. et al. Room-temperature van der Waals 2D ferromagnet switching by spin-orbit torques. arXiv: 2304.10718. arXiv.org e-Print archive. https://doi.org/10.48550/arXiv.2304.10718 (accessed Jul 29, 2023).

  114. Wang, Y.; Zhu, D. P.; Wu, Y.; Yang, Y. M.; Yu, J. W.; Ramaswamy, R.; Mishra, R.; Shi, S. Y.; Elyasi, M.; Teo, K. L. et al. Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques. Nat. Commun. 2017, 8, 1364.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Han, J. H.; Richardella, A.; Siddiqui, S. A.; Finley, J.; Samarth, N.; Liu, L. Q. Room-temperature spin-orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 2017, 119, 077702.

    Article  ADS  PubMed  Google Scholar 

  116. Fujimura, R.; Yoshimi, R.; Mogi, M.; Tsukazaki, A.; Kawamura, M.; Takahashi, K. S.; Kawasaki, M.; Tokura, Y. Current-induced magnetization switching at charge-transferred interface between topological insulator (Bi, Sb)2Te3 and van der Waals ferromagnet Fe3GeTe2. Appl. Phys. Lett. 2021, 119, 032402.

    Article  ADS  CAS  Google Scholar 

  117. MacNeill, D.; Stiehl, G. M.; Guimaraes, M. H. D.; Buhrman, R. A.; Park, J.; Ralph, D. C. Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 2017, 13, 300–305.

    Article  CAS  Google Scholar 

  118. Shi, S. Y.; Liang, S. H.; Zhu, Z. F.; Cai, K. M.; Pollard, S. D.; Wang, Y.; Wang, J. Y.; Wang, Q. S.; He, P.; Yu, J. W. et al. All-electric magnetization switching and dzyaloshinskii-moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 2019, 14, 945–949.

    Article  ADS  CAS  PubMed  Google Scholar 

  119. Liang, S. H.; Shi, S. Y.; Hsu, C. H.; Cai, K. M.; Wang, Y.; He, P.; Wu, Y.; Pereira, V. M.; Yang, H. Spin-orbit torque magnetization switching in MoTe2/permalloy heterostructures. Adv. Mater. 2020, 32, 2002799.

    Article  CAS  Google Scholar 

  120. Stiehl, G. M.; Li, R. F.; Gupta, V.; El Baggari, I., Jiang, S. W.; Xie, H. C.; Kourkoutis, L. F.; Mak, K. F.; Shan, J.; Buhrman, R. A. et al. Layer-dependent spin-orbit torques generated by the centrosymmetric transition metal dichalcogenide β-MoTe2. Phys. Rev. B 2019, 100, 184402.

    Article  ADS  CAS  Google Scholar 

  121. Kao, I. H.; Muzzio, R.; Zhang, H. T.; Zhu, M. L.; Gobbo, J.; Yuan, S. A.; Weber, D.; Rao, R.; Li, J. H.; Edgar, J. H. et al. Deterministic switching of a perpendicularly polarized magnet using unconventional spin-orbit torques in WTe2. Nat. Mater. 2022, 21, 1029–1034.

    Article  ADS  CAS  PubMed  Google Scholar 

  122. Shin, I.; Cho, W. J.; An, E. S.; Park, S.; Jeong, H. W.; Jang, S.; Baek, W. J.; Park, S. Y.; Yang, D. H.; Seo, J. H. et al. Spin-orbit torque switching in an all-van der Waals heterostructure. Adv. Mater. 2022, 34, 2101730.

    Article  CAS  Google Scholar 

  123. Wang, L. Z.; Xiong, J. L.; Cheng, B.; Dai, Y. D.; Wang, F. Y.; Pan, C.; Cao, T. J.; Liu, X. W.; Wang, P. F.; Chen, M. Y. et al. Cascadable in-memory computing based on symmetric writing and readout. Sci. Adv. 2022, 8, eabq6833.

    Article  ADS  CAS  PubMed  Google Scholar 

  124. Ou, Y. X.; Yanez, W.; Xiao, R.; Stanley, M.; Ghosh, S.; Zheng, B. Y.; Jiang, W.; Huang, Y. S.; Pillsbury, T.; Richardella, A. et al. ZrTe2/CrTe2: An epitaxial van der Waals platform for spintronics. Nat. Commun. 2022, 13, 2972.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Maruyama, T.; Shiota, Y.; Nozaki, T.; Ohta, K.; Toda, N.; Mizuguchi, M.; Tulapurkar, A. A.; Shinjo, T.; Shiraishi, M.; Mizukami, S. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 2009, 4, 158–161.

    Article  ADS  CAS  PubMed  Google Scholar 

  126. Shiota, Y.; Nozaki, T.; Bonell, F.; Murakami, S.; Shinjo, T.; Suzuki, Y. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 2012, 11, 39–43.

    Article  ADS  CAS  Google Scholar 

  127. Wang, W. G.; Li, M. G.; Hageman, S.; Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 2012, 11, 64–68.

    Article  ADS  CAS  Google Scholar 

  128. Cheng, G. H.; Rahman, M. M.; He, Z. P.; Allcca, A. L.; Rustagi, A.; Stampe, K. A.; Zhu, Y. L.; Yan, S. H.; Tian, S. J.; Mao, Z. Q. et al. Emergence of electric-field-tunable interfacial ferromagnetism in 2D antiferromagnet heterostructures. Nat. Commun. 2022, 13, 7348.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang, X. X.; Li, L. Z.; Weber, D.; Goldberger, J.; Mak, K. F.; Shan, J. Gate-tunable spin waves in antiferromagnetic atomic bilayers. Nat. Mater. 2020, 19, 838–842.

    Article  ADS  CAS  PubMed  Google Scholar 

  130. Wang, Z.; Zhang, T. Y.; Ding, M.; Dong, B. J.; Li, Y. X.; Chen, M. L.; Li, X. X.; Huang, J. Q.; Wang, H. W.; Zhao, X. T. et al. Electricfield control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 2018, 13, 554–559.

    Article  ADS  CAS  PubMed  Google Scholar 

  131. Tan, C.; Xie, W. Q.; Zheng, G. L.; Aloufi, N.; Albarakati, S.; Algarni, M.; Li, J. B.; Partridge, J.; Culcer, D.; Wang, X. L. et al. Gate-controlled magnetic phase transition in a van der Waals magnet Fe5GeTe2. Nano Lett. 2021, 21, 5599–5605.

    Article  ADS  CAS  PubMed  Google Scholar 

  132. Wang, C. S.; Wang, J.; Xie, W. Q.; Zhang, G. J.; Wu, H.; Zhou, J. H.; Zhu, X. D.; Ning, W.; Wang, G. P.; Tan, C. et al. Sign-tunable exchange bias effect in proton-intercalated Fe3GaTe2 nanoflakes. Phys. Rev. B 2023, 107, L140409.

    Article  ADS  CAS  Google Scholar 

  133. Liang, S. C.; Xie, T.; Blumenschein, N. A.; Zhou, T.; Ersevim, T.; Song, Z. H.; Liang, J. R.; Susner, M. A.; Conner, B. S.; Gong, S. J. et al. Small-voltage multiferroic control of two-dimensional magnetic insulators. Nat. Electron. 2023, 6, 199–205.

    Article  CAS  Google Scholar 

  134. Wang, Z.; Sapkota, D.; Taniguchi, T.; Watanabe, K.; Mandrus, D.; Morpurgo, A. F. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 2018, 18, 4303–4308.

    Article  ADS  CAS  PubMed  Google Scholar 

  135. Min, K. H.; Lee, D. H.; Choi, S. J.; Lee, I. H.; Seo, J.; Kim, D. W.; Ko, K. T.; Watanabe, K.; Taniguchi, T.; Ha, D. H. et al. Tunable spin injection and detection across a van der Waals interface. Nat. Mater. 2022, 21, 1144–1149.

    Article  ADS  CAS  PubMed  Google Scholar 

  136. Zhu, W. K.; Lin, H. L.; Yan, F. G.; Hu, C.; Wang, Z. A.; Zhao, L. X.; Deng, Y. C.; Kudrynskyi, Z. R.; Zhou, T.; Kovalyuk, Z. D. et al. Large tunneling magnetoresistance in van der Waals ferromagnet/semiconductor heterojunctions. Adv. Mater. 2021, 33, 2104658.

    Article  CAS  Google Scholar 

  137. Li, X. L.; Lü, J. T.; Zhang, J.; You, L.; Su, Y. R.; Tsymbal, E. Y. Spin-dependent transport in van der Waals magnetic tunnel junctions with Fe3GeTe2 electrodes. Nano Lett. 2019, 19, 5133–5139.

    Article  ADS  CAS  PubMed  Google Scholar 

  138. Jin, W.; Zhang, G. J.; Wu, H.; Yang, L.; Zhang, W. F.; Chang, H. X. Room-temperature spin-valve devices based on Fe3GaTe2/MoS2/Fe3GaTe2 2D van der Waals heterojunctions. Nanoscale 2023, 15, 5371–5378.

    Article  CAS  PubMed  Google Scholar 

  139. Yin, H. F.; Zhang, P. Z.; Jin, W.; Di, B. Y.; Wu, H.; Zhang, G. J.; Zhang, W. F.; Chang, H. X. Fe3GaTe2/MoSe2 ferromagnet/semiconductor 2D van der Waals heterojunction for room-temperature spin-valve devices. CsystEngComm 2023, 25, 1339–1346.

    Article  CAS  Google Scholar 

  140. Zhu, W. K.; Xie, S. H.; Lin, H. L.; Zhang, G. J.; Wu, H.; Hu, T. G.; Wang, Z. A.; Zhang, X. M.; Xu, J. H.; Wang, Y. J. et al. Large room-temperature magnetoresistance in van der Waals ferromagnet/semiconductor junctions. Chin. Phys. Lett. 2022, 39, 128501.

    Article  ADS  Google Scholar 

  141. Jin, W.; Zhang, G. J.; Wu, H.; Yang, L.; Zhang, W. F.; Chang, H. X. Room-temperature and tunable tunneling magnetoresistance in Fe3GaTe2-based 2D van der Waals heterojunctions. ACS Appl. Mater. Interfaces 2023, 15, 36519–36526.

    Article  CAS  PubMed  Google Scholar 

  142. Miao, G. X.; Müller, M.; Moodera, J. S. Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. Phys. Rev. Lett. 2009, 102, 076601.

    Article  ADS  PubMed  Google Scholar 

  143. Worledge, D. C.; Geballe, T. H. Magnetoresistive double spin filter tunnel junction. J. Appl. Phys. 2000, 88, 5277–5279.

    Article  ADS  CAS  Google Scholar 

  144. Song, T. C.; Cai, X. H.; Tu, M. W. Y.; Zhang, X. O.; Huang, B.; Wilson, N. P.; Seyler, K. L.; Zhu, L.; Taniguchi, T.; Watanabe, K. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018, 360, 1214–1218.

    Article  ADS  CAS  PubMed  Google Scholar 

  145. Song, T. C.; Tu, M. W. Y.; Carnahan, C.; Cai, X. H.; Taniguchi, T.; Watanabe, K.; McGuire, M. A.; Cobden, D. H.; Xiao, D.; Yao, W. et al. Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett. 2019, 19, 915–920.

    Article  ADS  CAS  PubMed  Google Scholar 

  146. Wang, Z.; Gutiérrez-Lezama, I.; Ubrig, N.; Kroner, M.; Gibertini, M.; Taniguchi, T.; Watanabe, K.; Imamoğlu, A.; Giannini, E.; Morpurgo, A. F. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 2018, 9, 2516.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  147. Kim, H. H.; Yang, B. W.; Patel, T.; Sfigakis, F.; Li, C. H.; Tian, S. J.; Lei, H. C.; Tsen, A. W. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 2018, 18, 4885–4890.

    Article  ADS  CAS  PubMed  Google Scholar 

  148. Kim, H. H.; Yang, B. W.; Tian, S. J.; Li, C. H.; Miao, G. X.; Lei, H. C.; Tsen, A. W. Tailored tunnel magnetoresistance response in three ultrathin chromium trihalides. Nano Lett. 2019, 19, 5739–5745.

    Article  ADS  CAS  PubMed  Google Scholar 

  149. Ghazaryan, D.; Greenaway, M. T.; Wang, Z.; Guarochico-Moreira, V. H.; Vera-Marun, I. J.; Yin, J.; Liao, Y.; Morozov, S. V.; Kristanovski, O.; Lichtenstein, A. I. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 2018, 1, 344–349.

    Article  CAS  Google Scholar 

  150. Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Shan, J.; Mak, K. F. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron. 2019, 2, 159–163.

    Article  Google Scholar 

  151. Cai, X. H.; Song, T. C.; Wilson, N. P.; Clark, G.; He, M. H.; Zhang, X. O.; Taniguchi, T.; Watanabe, K.; Yao, W.; Xiao, D. et al. Atomically thin CrCl3: An in-plane layered antiferromagnetic insulator. Nano Lett. 2019, 19, 3993–3998.

    Article  ADS  CAS  PubMed  Google Scholar 

  152. Lin, H. L.; Yan, F. G.; Hu, C.; Lv, Q. S.; Zhu, W. K.; Wang, Z. A.; Wei, Z. M.; Chang, K.; Wang, K. Y. Spin-valve effect in Fe3GeTe2/MoS2/Fe3GeTe2 van der Waals heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 43921–43926.

    Article  CAS  PubMed  Google Scholar 

  153. Seol, M.; Lee, M. H.; Kim, H.; Shin, K. W.; Cho, Y.; Jeon, I.; Jeong, M.; Lee, H. I.; Park, J.; Shin, H. J. High-throughput growth of wafer-scale monolayer transition metal dichalcogenide via vertical ostwald ripening. Adv. Mater. 2020, 32, 2003542.

    Article  CAS  Google Scholar 

  154. Kang, K.; Xie, S. F.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

    Article  ADS  CAS  PubMed  Google Scholar 

  155. Tao, J. G.; Chai, J. W.; Lu, X.; Wong, L. M.; Wong, T. I.; Pan, J. S.; Xiong, Q. H.; Chi, D. Z.; Wang, S. J. Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale 2015, 7, 2497–2503.

    Article  ADS  CAS  PubMed  Google Scholar 

  156. Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Article  ADS  CAS  PubMed  Google Scholar 

  157. Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S. E.; Sim, S. H.; Song, Y. I., Hong, B. H.; Ahn, J. H. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 2010, 10, 490–493.

    Article  ADS  CAS  PubMed  Google Scholar 

  158. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Article  ADS  CAS  PubMed  Google Scholar 

  159. Shim, J.; Bae, S. H.; Kong, W.; Lee, D.; Qiao, K.; Nezich, D.; Park, Y. J.; Zhao, R. K.; Sundaram, S.; Li, X. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 2018, 362, 665–670.

    Article  ADS  CAS  PubMed  Google Scholar 

  160. Liu, F.; Wu, W. J.; Bai, Y. S.; Chae, S. H.; Li, Q. Y.; Wang, J.; Hone, J.; Zhu, X. Y. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 2020, 367, 903–906.

    Article  ADS  CAS  PubMed  Google Scholar 

  161. Johansen, Ø.; Risinggård, V.; Sudbø, A.; Linder, J.; Brataas, A. Current control of magnetism in two-dimensional Fe3GeTe2. Phys. Rev. Lett. 2019, 122, 217203.

    Article  ADS  CAS  PubMed  Google Scholar 

  162. Zhang, K. X.; Han, S.; Lee, Y.; Coak, M. J.; Kim, J.; Hwang, I.; Son, S.; Shin, J.; Lim, M.; Jo, D. et al. Gigantic current control of coercive field and magnetic memory based on nanometer-thin ferromagnetic van der Waals Fe3GeTe2. Adv. Mater. 2021, 33, 2004110.

    Article  CAS  Google Scholar 

  163. Zhang, K. X.; Lee, Y.; Coak, M. J.; Kim, J.; Son, S.; Hwang, I.; Ko, D. S.; Oh, Y.; Jeon, I.; Kim, D. et al. Highly efficient nonvolatile magnetization switching and multi-level states by current in single van der Waals topological ferromagnet Fe3GeTe2. Adv. Funct. Mater. 2021, 31, 2105992.

    Article  CAS  Google Scholar 

  164. Ahmad, H.; Atulasimha, J.; Bandyopadhyay, S. Reversible strain-induced magnetization switching in FeGa nanomagnets: Pathway to a rewritable, non-volatile, non-toggle, extremely low energy straintronic memory. Sci. Rep. 2015, 5, 18264.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhao, Z. Y.; Jamali, M.; D’Souza, N.; Zhang, D. L.; Bandyopadhyay, S.; Atulasimha, J.; Wang, J. P. Giant voltage manipulation of MgO-based magnetic tunnel junctions via localized anisotropic strain: A potential pathway to ultra-energy-efficient memory technology. Appl. Phys. Lett. 2016, 109, 092403.

    Article  ADS  Google Scholar 

  166. Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; Gajek, M.; Han, S. J.; He, Q.; Balke, N.; Yang, C. H.; Lee, D.; Hu, W. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 2008, 7, 478–482.

    Article  ADS  CAS  PubMed  Google Scholar 

  167. Heron, J. T.; Bosse, J. L.; He, Q.; Gao, Y.; Trassin, M.; Ye, L.; Clarkson, J. D.; Wang, C.; Liu, J.; Salahuddin, S. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 2014, 516, 370–373.

    Article  ADS  CAS  PubMed  Google Scholar 

  168. Zhang, T. Y.; Chen, Y. S.; Li, Y. X.; Guo, Z. C.; Wang, Z.; Han, Z.; He, W.; Zhang, J. Laser-induced magnetization dynamics in a van der Waals ferromagnetic Cr2Ge2Te6 nanoflake. Appl. Phys. Lett. 2020, 116, 223103.

    Article  ADS  CAS  Google Scholar 

  169. Alahmed, L.; Nepal, B.; Macy, J.; Zheng, W. K.; Casas, B.; Sapkota, A.; Jones, N.; Mazza, A. R.; Brahlek, M.; Jin, W. C. et al. Magnetism and spin dynamics in room-temperature van der Waals magnet Fe5GeTe2. 2D Mater. 2021, 8, 45030.

    Article  CAS  Google Scholar 

  170. Shen, X.; Chen, H. R.; Li, Y.; Xia, H.; Zeng, F. L.; Xu, J.; Kwon, H. Y.; Ji, Y.; Won, C.; Zhang, W. et al. Multi-domain ferromagnetic resonance in magnetic van der Waals crystals CrI3 and CrBr3. J. Magn. Magn. Mater. 2021, 528, 167772.

    Article  CAS  Google Scholar 

  171. Xu, H. J.; Jia, K.; Huang, Y.; Meng, F. Q.; Zhang, Q. H.; Zhang, Y.; Cheng, C.; Lan, G. B.; Dong, J.; Wei, J. W. et al. Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping. Nat. Commun. 2023, 14, 3824.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deblina Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajale, S.N., Hanna, J., Jang, K. et al. Two-dimensional magnetic materials for spintronic applications. Nano Res. 17, 743–762 (2024). https://doi.org/10.1007/s12274-024-6447-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6447-2

Keywords

Navigation