Skip to main content
Log in

Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although many emerging new phenomena have been unraveled in two dimensional (2D) materials with long-range spin orderings, the usually low critical temperature in van der Waals (vdW) magnetic material has thus far hindered the related practical applications. Here, we show that ferromagnetism can hold above 300 K in a metallic phase of 1T-CrTe2 down to the ultra-thin limit. It thus makes CrTe2 so far the only known exfoliated ultra-thin vdW magnets with intrinsic long-range magnetic ordering above room temperature. An in-plane room-temperature negative anisotropic magnetoresistance (AMR) was obtained in ultra-thin CrTe2 devices, with a sign change in the AMR at lower temperature, with −0.6% and +5% at 300 and 10 K, respectively. Our findings provide insights into magnetism in ultra-thin CrTe2, expanding the vdW crystals toolbox for future room-temperature spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

    CAS  Google Scholar 

  2. Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, Y., A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

    CAS  Google Scholar 

  3. Wang, Z.; Zhang, T. Y.; Ding, M.; Dong, B. J.; Li, Y. X.; Chen, M. L.; Li, X. X.; Huang, J. Q.; Wang, H. W.; Zhao, X. T. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 2018, 13, 554–559.

    CAS  Google Scholar 

  4. Jiang, S. W.; Shan, J.; Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 2018, 17, 406–410.

    CAS  Google Scholar 

  5. Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

    CAS  Google Scholar 

  6. Sun, Z. Y.; Yi, Y. F.; Song, T. C.; Clark, G.; Huang, B.; Shan, Y. W.; Wu, S.; Huang, D.; Gao, C. L.; Chen, Z. H. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 2019, 572, 497–501.

    CAS  Google Scholar 

  7. Chen, W. J.; Sun, Z. Y.; Wang, Z. J.; Gu, L. H.; Xu, X. D.; Wu, S. W.; Gao, C. L. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 2019, 366, 983–987.

    CAS  Google Scholar 

  8. Li, X. X.; Dong, B. J.; Sun, X. D.; Wang, H. W.; Yang, T.; Yu, G. Q.; Han, Z. Y. Perspectives on exfoliated two-dimensional spintronics. J. Semicond. 2019, 40, 081508.

    CAS  Google Scholar 

  9. Song, T. C.; Cai, X. H.; Tu, M. W. Y.; Zhang, X. O.; Huang, B.; Wilson, N. P.; Seyler, K. L.; Zhu, L.; Taniguchi, T.; Watanabe, K. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018, 360, 1214–1218.

    CAS  Google Scholar 

  10. Wang, X.; Tang, J.; Xia, X. X.; He, C. L.; Zhang, J. W.; Liu, Y. Z.; Wan, C. H.; Fang, C.; Guo, C. Y.; Yang, W. L. et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 2019, 5, eaaw8904.

    CAS  Google Scholar 

  11. Li, Q.; Yang, M. M.; Gong, C.; Chopdekar, R. V.; N’Diaye, A. T.; Turner, J.; Chen, G.; Scholl, A.; Shafer, P.; Arenholz, E. et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature. Nano Lett. 2018, 18, 5974–5980.

    CAS  Google Scholar 

  12. Wang, C.; Zhou, X. Y.; Zhou, L. W.; Tong, N. H.; Lu, Z. Y.; Ji, W. A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te). Sci. Bull. 2019, 64, 293–300.

    CAS  Google Scholar 

  13. Huang, C. X.; Feng, J. S.; Zhou, J.; Xiang, H. J.; Deng, K. M.; Kan, E. J. Ultra-high-temperature ferromagnetism in intrinsic tetrahedral semiconductors. J. Am. Chem. Soc. 2019, 141, 12413–12418.

    CAS  Google Scholar 

  14. You, J. Y.; Zhang, Z.; Gu, B.; Su, G. Two-dimensional room-temperature ferromagnetic semiconductors with quantum anomalous Hall effect. Phys. Rev. Appl. 2019, 12, 024063.

    CAS  Google Scholar 

  15. O’Hara, D. J.; Zhu, T. C.; Trout, A. H.; Ahmed, A. S.; Luo, Y. K.; Lee, C. H.; Brenner, M. R.; Rajan, S.; Gupta, J. A.; McComb, D. W. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 2018, 18, 3125–3131.

    Google Scholar 

  16. Li, J.; Zhao, B.; Chen, P.; Wu, R. X.; Li, B.; Xia, Q. L.; Guo, G. H.; Luo, J.; Zang, K. T.; Zhang, Z. W. et al. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates. Adv. Mater. 2018, 30, 1801043.

    Google Scholar 

  17. Yu, W.; Li, J.; Herng, T. S.; Wang, Z. S.; Zhao, X. X.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J. D. et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779.

    CAS  Google Scholar 

  18. Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293.

    CAS  Google Scholar 

  19. Onari, S.; Arai, T. Infrared lattice vibrations and dielectric dispersion in antiferromagnetic semiconductor MnSe2. J. Phys. Soc. Jpn. 1979, 46, 184–188.

    CAS  Google Scholar 

  20. Pollard, R. J.; McCann, V. H.; Ward, J. B. Magnetic structures of α-MnS and MnSe from 57Fe Mossbauer spectroscopy. J. Phys. C: Solid State Phys. 1983, 16, 345–353.

    CAS  Google Scholar 

  21. van Bruggen, C. F.; Haas, C. Magnetic susceptibility and electrical properties of VSe2 single crystals. Solid State Commun. 1976, 20, 251–254.

    CAS  Google Scholar 

  22. Bayard, M.; Sienko, M. J. Anomalous electrical and magnetic properties of vanadium diselenide. J. Solid State Chem. 1976, 19, 325–329.

    CAS  Google Scholar 

  23. Liu, H. T.; Bao, L. H.; Zhou, Z.; Che, B. Y.; Zhang, R. Z.; Bian, C.; Ma, R. S.; Wu, L. M.; Yang, H. F.; Li, J. J. et al. Quasi-2D transport and weak antilocalization effect in few-layered VSe2. Nano Lett. 2019, 19, 4551–4559.

    CAS  Google Scholar 

  24. Jolie, W.; Knispel, T.; Ehlen, N.; Nikonov, K.; Busse, C.; Grüneis, A.; Michely, T. Charge density wave phase of VSe2 revisited. Phys. Rev. B 2019, 99, 115417.

    CAS  Google Scholar 

  25. Chen, P.; Pai, W. W.; Chan, Y. H.; Madhavan, V.; Chou, M. Y.; Mo, S. K.; Fedorov, A. V.; Chiang, T. C. Unique gap structure and symmetry of the charge density wave in single-layer VSe2. Phys. Rev. Lett. 2018, 121, 196402.

    CAS  Google Scholar 

  26. Feng, J. G.; Biswas, D.; Rajan, A.; Watson, M. D.; Mazzola, F.; Clark, O. J.; Underwood, K.; Marković, I.; McLaren, M.; Hunter, A. et al. Electronic structure and enhanced charge-density wave order of monolayer VSe2. Nano Lett. 2018, 18, 4493–4499.

    CAS  Google Scholar 

  27. Coelho, P. M.; Lasek, K.; Nguyen Cong, K.; Li, J. F.; Niu, W.; Liu, W. Q.; Oleynik, I. I.; Batzill, M. Monolayer modification of VTe2 and its charge density wave. J. Phys. Chem. Lett. 2019, 10, 4987–4993.

    CAS  Google Scholar 

  28. Wong, P. K. J.; Zhang, W.; Zhou, J.; Bussolotti, F.; Yin, X. M.; Zhang, L.; N’Diaye, A. T.; Morton, S. A.; Chen, W.; Goh, J. et al. Metallic 1T phase, 3d1 electronic configuration and charge density wave order in molecular beam epitaxy grown monolayer vanadium ditelluride. ACS Nano 2019, 13, 12894–12900.

    CAS  Google Scholar 

  29. Wong, P. K. J.; Zhang, W.; Bussolotti, F.; Yin, X. M.; Herng, T. S.; Zhang, L.; Huang, Y. L.; Vinai, G.; Krishnamurthi, S.; Bukhvalov, D. W. et al. Evidence of spin frustration in a vanadium diselenide monolayer magnet. Adv. Mater. 2019, 31, 1901185.

    Google Scholar 

  30. Coelho, P. M.; Nguyen Cong, K.; Bonilla, M.; Kolekar, S.; Phan, M. H.; Avila, J.; Asensio, M. C.; Oleynik, I. I.; Batzill, M. Charge density wave state suppresses ferromagnetic ordering in VSe2 monolayers. J. Phys. Chem. C 2019, 123, 14089–14096.

    CAS  Google Scholar 

  31. Duvjir, G.; Choi, B. K.; Jang, I.; Ulstrup, S.; Kang, S.; Thi Ly, T.; Kim, S.; Choi, Y. H.; Jozwiak, C.; Bostwick, A. et al. Emergence of a metal-insulator transition and high-temperature charge-density waves in VSe2 at the monolayer limit. Nano Lett. 2018, 18, 5432–5438.

    CAS  Google Scholar 

  32. Zhang, W.; Zhang, L.; Wong, P. K. J.; Yuan, J. R.; Vinai, G.; Torelli, P.; van der Laan, G.; Feng, Y. P.; Wee, A. T. S. Magnetic transition in monolayer VSe2 via interface hybridization. ACS Nano 2019, 13, 8997–9004.

    CAS  Google Scholar 

  33. Vinai, G.; Bigi, C.; Rajan, A.; Watson, M. D.; Lee, T. L.; Mazzola, F.; Modesti, S.; Barua, S.; Hatnean, M. C.; Balakrishnan, G. et al. Proximity-induced ferromagnetism and chemical reactivity in few-layer VSe2 heterostructures. Phys. Rev. B 2020, 101, 035404.

    CAS  Google Scholar 

  34. May, A. F.; Ovchinnikov, D.; Zheng, Q.; Hermann, R.; Calder, S.; Huang, B.; Fei, Z. Y.; Liu, Y. H.; Xu, X. D.; McGuire, M. A. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 2019, 13, 4436–4442.

    CAS  Google Scholar 

  35. Freitas, D. C.; Weht, R.; Sulpice, A.; Remenyi, G.; Strobel, P.; Gay, F.; Marcus, J.; Núñez-Regueiro, M. Ferromagnetism in layered metastable 1T-CrTe2. J. Phys.: Condens. Matter 2015, 27, 176002.

    Google Scholar 

  36. Persson, K. Materials Data on CrTe2 (SG: 164) by Materials Project. 2016[Online]. https://www.osti.gov/servlets/purl/1284084.

  37. Purbawati, A.; Coraux, J.; Vogel, J.; Hadj-Azzem, A.; Wu, N.; Bendiab, N.; Jegouso, D.; Renard, J.; Marty, L.; Bouchiat, V. et al. In-plane magnetic domains and Néel-like domain walls in thin flakes of the room temperature CrTe2 van der Waals ferromagnet. ACS Appl. Mater. Interfaces 2020, 12, 30702–30710.

    CAS  Google Scholar 

  38. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    CAS  Google Scholar 

  39. Blundell, S. Magnetism in Condensed Matter; Oxford University Press: Oxford, 2001.

    Google Scholar 

  40. Mohn, P. Magnetism in the Solid State; Springer-Verlag: Berlin, 2003.

    Google Scholar 

  41. Mermin, N. D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136.

    CAS  Google Scholar 

  42. Stanley, H. E.; Kaplan, T. A. Possibility of a phase transition for the two-dimensional Heisenberg model. Phys. Rev. Lett. 1966, 17, 913–915.

    CAS  Google Scholar 

  43. Sugawara, K.; Nakata, Y.; Fujii, K.; Nakayama, K.; Souma, S.; Takahashi, T.; Sato, T. Monolayer VTe2: Incommensurate Fermi surface nesting and suppression of charge density waves. Phys. Rev. B 2019, 99, 241404.

    CAS  Google Scholar 

  44. Takata, F.; Kabara, K.; Ito, K.; Tsunoda, M.; Suemasu, T. Negative anisotropic magnetoresistance resulting from minority spin transport in NixFe4−xN (x = 1 and 3) epitaxial films. J. Appl. Phys. 2017, 121, 023903.

    Google Scholar 

  45. Tsunoda, M.; Komasaki, Y.; Kokado, S.; Isogami, S.; Chen, C. C.; Takahashi, M. Negative anisotropic magnetoresistance in Fe4N film. Appl. Phys. Exp. 2009, 2, 083001.

    Google Scholar 

  46. Zhang, D. M.; Richardella, A.; Rench, D. W.; Xu, S. Y.; Kandala, A.; Flanagan, T. C.; Beidenkopf, H.; Yeats, A. L.; Buckley, B. B.; Klimov, P. V. et al. Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator. Phys. Rev. B 2012, 86, 205127.

    Google Scholar 

  47. McGuire, T.; Aboaf, J.; Klokholm, E. Negative anisotropic magnetoresistance in 3d metals and alloys containing iridium. IEEE Trans. Mag. 1984, 20, 972–974.

    Google Scholar 

  48. You, Y. R.; Gong, Y. Y.; Li, H.; Li, Z. F.; Zhu, M. M.; Tang, J. X.; Liu, E. K.; Yao, Y.; Xu, G. Z.; Xu, F. et al. Angular dependence of the topological Hall effect in the uniaxial van der Waals ferromagnet Fe3GeTe2. Phys. Rev. B 2019, 100, 134441.

    CAS  Google Scholar 

  49. Van Elst, H. C. The anisotropy in the magneto-resistance of some nickel alloys. Physica 1959, 25, 708–720.

    CAS  Google Scholar 

  50. Bozorth, R. M. Magnetoresistance and domain theory of iron-nickel alloys. Phys. Rev. 1946, 70, 923–932.

    CAS  Google Scholar 

  51. Kokado, S.; Tsunoda, M.; Harigaya, K.; Sakuma, A. Anisotropic magnetoresistance effects in Fe, Co, Ni, Fe4N, and half-metallic ferromagnet: A systematic analysis. J. Phys. Soc. Jpn. 2012, 81, 024705.

    Google Scholar 

  52. Hellman, F.; Hoffmann, A.; Tserkovnyak, Y.; Beach, G. S.; Fullerton, E. E.; Leighton, C.; MacDonald, A. H.; Ralph, D. C.; Arena, D. A.; Dürr, H. A. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 2017, 89, 025006.

    Google Scholar 

  53. Awad, A. A.; Dürrenfeld, P.; Houshang, A.; Dvornik, M.; Iacocca, E.; Dumas, R. K.; Åkerman, J. Long-range mutual synchronization of spin Hall nano-oscillators. Nat. Phys. 2017, 13, 292–299.

    CAS  Google Scholar 

  54. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  55. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    CAS  Google Scholar 

  56. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  57. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (Nos. 2019YFA0307800, 2017YFA0206302, and 2017YFA0206200) and the National Natural Science Foundation of China (NSFC) (Nos. 11974357, U1932151, and 51627801). G. Y. and X. H. thank the financial supports from the National Natural Science Foundation of China (NSFC) (No. 11874409). This work is supported by the National Natural Science Foundation of China (NSFC) (Nos. 61574060, and 8206300210). T. Y. acknowledges supports from the Major Program of Aerospace Advanced Manufacturing Technology Research Foundation NSFC and CASC, China (No. U1537204). Z. H. acknowledges the support from the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (No. KF201816). The authors appreciate the help of Dr. Binbin Jiang in obtaining the HAADF-STEM images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teng Yang, Guoqiang Yu, Bingwu Wang or Zheng Han.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Li, W., Wang, X. et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 13, 3358–3363 (2020). https://doi.org/10.1007/s12274-020-3021-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3021-4

Keywords

Navigation